Deep learned triple-tracer multiplexed PET myocardial image separation

B. Pan, P. Marsden, A. J. Reader
{"title":"Deep learned triple-tracer multiplexed PET myocardial image separation","authors":"B. Pan, P. Marsden, A. J. Reader","doi":"10.3389/fnume.2024.1379647","DOIUrl":null,"url":null,"abstract":"In multiplexed positron emission tomography (mPET) imaging, physiological and pathological information from different radiotracers can be observed simultaneously in a single dynamic PET scan. The separation of mPET signals within a single PET scan is challenging due to the fact that the PET scanner measures the sum of the PET signals of all the tracers. The conventional multi-tracer compartment modeling method (MTCM) requires staggered injections and assumes that the arterial input functions (AIFs) of each tracer are known.In this work, we propose a deep learning-based method to separate triple-tracer PET images without explicitly knowing the AIFs. Dynamic triple-tracer noisy MLEM reconstruction was used as the network input and dynamic single-tracer noisy MLEM reconstructions were used as the training labels.A simulation study was performed to evaluate the performance of the proposed framework on triple-tracer ([18F]FDG+82Rb+[94mTc]sestamibi) PET myocardial imaging. The results show that the proposed methodology substantially reduced the noise level compared to the results obtained from single-tracer imaging. Additionally, it achieved lower bias and standard deviation in the separated single-tracer images compared to the MTCM-based method at both the voxel and ROI levels.As compared to the MTCM separation, the proposed method uses spatiotemporal information for separation, which enhances the separation performance at both the voxel and ROI levels. The simulation study also indicates the feasibility and potential of the proposed DL-based method for the application to pre-clinical and clinical studies.","PeriodicalId":505895,"journal":{"name":"Frontiers in Nuclear Medicine","volume":"12 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Nuclear Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnume.2024.1379647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In multiplexed positron emission tomography (mPET) imaging, physiological and pathological information from different radiotracers can be observed simultaneously in a single dynamic PET scan. The separation of mPET signals within a single PET scan is challenging due to the fact that the PET scanner measures the sum of the PET signals of all the tracers. The conventional multi-tracer compartment modeling method (MTCM) requires staggered injections and assumes that the arterial input functions (AIFs) of each tracer are known.In this work, we propose a deep learning-based method to separate triple-tracer PET images without explicitly knowing the AIFs. Dynamic triple-tracer noisy MLEM reconstruction was used as the network input and dynamic single-tracer noisy MLEM reconstructions were used as the training labels.A simulation study was performed to evaluate the performance of the proposed framework on triple-tracer ([18F]FDG+82Rb+[94mTc]sestamibi) PET myocardial imaging. The results show that the proposed methodology substantially reduced the noise level compared to the results obtained from single-tracer imaging. Additionally, it achieved lower bias and standard deviation in the separated single-tracer images compared to the MTCM-based method at both the voxel and ROI levels.As compared to the MTCM separation, the proposed method uses spatiotemporal information for separation, which enhances the separation performance at both the voxel and ROI levels. The simulation study also indicates the feasibility and potential of the proposed DL-based method for the application to pre-clinical and clinical studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习三重示踪剂复用 PET 心肌图像分离
在多重正电子发射断层扫描(mPET)成像中,可在一次动态正电子发射断层扫描中同时观察来自不同放射性同位素的生理和病理信息。由于正电子发射计算机扫描仪测量的是所有示踪剂的正电子发射信号之和,因此在一次正电子发射计算机扫描中分离 mPET 信号具有挑战性。传统的多示踪剂分区建模方法(MTCM)需要交错注射,并假设每种示踪剂的动脉输入函数(AIF)是已知的。我们进行了一项模拟研究,以评估拟议框架在三重示踪剂([18F]FDG+82Rb+[94mTc]sestamibi)PET心肌成像上的性能。结果表明,与单示踪剂成像结果相比,所提出的方法大大降低了噪音水平。此外,与基于 MTCM 的方法相比,该方法在体素和 ROI 层面上分离出的单示踪剂图像的偏差和标准偏差都更小。与 MTCM 分离法相比,该方法利用时空信息进行分离,从而提高了体素和 ROI 层面的分离性能。模拟研究还表明,基于 DL 的拟议方法具有应用于临床前和临床研究的可行性和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance of simplified methods for quantification of [18F]NaF uptake in fibrodysplasia ossificans progressiva First-in-human infection imaging with 89Zr-labelled leukocytes and comparison of scan quality with [99mTc]Tc-HMPAO-labelled leukocytes Case report: When infection lurks behind malignancy: a unique case of primary bone lymphoma mimicking infectious process in the spine QUALIPAED—A retrospective quality control study evaluating pediatric long axial field-of-view low-dose FDG-PET/CT Editorial: Women in radionuclide therapy: 2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1