Deciphering the Molecular Interaction Process of Gallium Maltolate on SARS-CoV-2 Main and Papain-Like Proteases: A Theoretical Study

Kevin Taype-Huanca, Manuel I. Osorio, Diego Inostroza, Luis Leyva-Parra, L. Ruiz, Ana Valderrama-Negrón, J. Alvarado-Huayhuaz, O. Yáñez, W. Tiznado
{"title":"Deciphering the Molecular Interaction Process of Gallium Maltolate on SARS-CoV-2 Main and Papain-Like Proteases: A Theoretical Study","authors":"Kevin Taype-Huanca, Manuel I. Osorio, Diego Inostroza, Luis Leyva-Parra, L. Ruiz, Ana Valderrama-Negrón, J. Alvarado-Huayhuaz, O. Yáñez, W. Tiznado","doi":"10.3390/biophysica4020013","DOIUrl":null,"url":null,"abstract":"This study explored the inhibitory potential of gallium maltolate against severe acute respiratory syndrome coronavirus 2 and main and papain-like proteases. Computational methods, including density functional theory and molecular docking, were used to assess gallium maltolate reactivity and binding interactions. Density functional theory calculations revealed gallium maltolate’s high electron-capturing capacity, particularly around the gallium metal atom, which may contribute to their activity. Molecular docking demonstrated that gallium maltolate can form strong hydrogen bonds with key amino acid residues like glutamate-166 and cysteine-145, tightly binding to main and papain-like proteases. The binding energy and interactions of gallium maltolate were comparable to known SARS-CoV-2 inhibitors like N-[(5-methyl-1,2-oxazol-3-yl)carbonyl]-L-alanyl-L-valyl-N-{(2S,3E)-5-(benzyloxy)-5-oxo-1-[(3S)-2-oxopyrrolidin-3-yl]pent-3-en-2-yl}-L-leucinamide, indicating its potential as an antiviral agent. However, further experimental validation is required to confirm its effectiveness in inhibiting SARS-CoV-2 replication and treating COVID-19.","PeriodicalId":72401,"journal":{"name":"Biophysica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biophysica4020013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explored the inhibitory potential of gallium maltolate against severe acute respiratory syndrome coronavirus 2 and main and papain-like proteases. Computational methods, including density functional theory and molecular docking, were used to assess gallium maltolate reactivity and binding interactions. Density functional theory calculations revealed gallium maltolate’s high electron-capturing capacity, particularly around the gallium metal atom, which may contribute to their activity. Molecular docking demonstrated that gallium maltolate can form strong hydrogen bonds with key amino acid residues like glutamate-166 and cysteine-145, tightly binding to main and papain-like proteases. The binding energy and interactions of gallium maltolate were comparable to known SARS-CoV-2 inhibitors like N-[(5-methyl-1,2-oxazol-3-yl)carbonyl]-L-alanyl-L-valyl-N-{(2S,3E)-5-(benzyloxy)-5-oxo-1-[(3S)-2-oxopyrrolidin-3-yl]pent-3-en-2-yl}-L-leucinamide, indicating its potential as an antiviral agent. However, further experimental validation is required to confirm its effectiveness in inhibiting SARS-CoV-2 replication and treating COVID-19.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解密麦芽酮酸镓与 SARS-CoV-2 主要蛋白酶和类木瓜蛋白酶的分子相互作用过程:理论研究
本研究探讨了麦芽酮酸镓对严重急性呼吸系统综合征冠状病毒 2 和主要蛋白酶以及类木瓜蛋白酶的抑制潜力。研究采用密度泛函理论和分子对接等计算方法评估了麦芽酮酸镓的反应性和结合相互作用。密度泛函理论计算揭示了麦芽酮酸镓的高电子捕获能力,尤其是在镓金属原子周围,这可能有助于提高其活性。分子对接表明,麦芽酮酸镓能与谷氨酸-166 和半胱氨酸-145 等关键氨基酸残基形成强氢键,与主蛋白酶和类木瓜蛋白酶紧密结合。麦芽酮酸镓的结合能和相互作用与已知的 SARS-CoV-2 抑制剂如 N-[(5-甲基-1,2-恶唑-3-基)羰基]-L-丙氨酰-L-缬氨酰-N-{(2S,3E)-5-(苄氧基)-5-氧代-1-[(3S)-2-氧代吡咯烷-3-基]戊-3-烯-2-基}-L-亮氨酰胺相当,这表明它具有作为抗病毒剂的潜力。不过,要确认它在抑制 SARS-CoV-2 复制和治疗 COVID-19 方面的有效性,还需要进一步的实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
Anion Effect on Phase Separation of Polyethylene Glycol-8000–Sodium Salt Two-Phase Systems Intermolecular FRET Pairs as An Approach to Visualize Specific Enzyme Activity in Model Biomembranes and Living Cells Bay Laurel of Northern Morocco: A Comprehensive Analysis of Its Phytochemical Profile, Mineralogical Composition, and Antioxidant Potential Differential Scanning Calorimetry of Proteins and the Two-State Model: Comparison of Two Formulas Biophysical Breakthroughs Projected for the Phage Therapy of Bacterial Disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1