A review of visual SLAM for robotics: evolution, properties, and future applications

Basheer Al-Tawil, Thorsten Hempel, Ahmed A. Abdelrahman, A. Al-Hamadi
{"title":"A review of visual SLAM for robotics: evolution, properties, and future applications","authors":"Basheer Al-Tawil, Thorsten Hempel, Ahmed A. Abdelrahman, A. Al-Hamadi","doi":"10.3389/frobt.2024.1347985","DOIUrl":null,"url":null,"abstract":"Visual simultaneous localization and mapping (V-SLAM) plays a crucial role in the field of robotic systems, especially for interactive and collaborative mobile robots. The growing reliance on robotics has increased complexity in task execution in real-world applications. Consequently, several types of V-SLAM methods have been revealed to facilitate and streamline the functions of robots. This work aims to showcase the latest V-SLAM methodologies, offering clear selection criteria for researchers and developers to choose the right approach for their robotic applications. It chronologically presents the evolution of SLAM methods, highlighting key principles and providing comparative analyses between them. The paper focuses on the integration of the robotic ecosystem with a robot operating system (ROS) as Middleware, explores essential V-SLAM benchmark datasets, and presents demonstrative figures for each method’s workflow.","PeriodicalId":504612,"journal":{"name":"Frontiers in Robotics and AI","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2024.1347985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Visual simultaneous localization and mapping (V-SLAM) plays a crucial role in the field of robotic systems, especially for interactive and collaborative mobile robots. The growing reliance on robotics has increased complexity in task execution in real-world applications. Consequently, several types of V-SLAM methods have been revealed to facilitate and streamline the functions of robots. This work aims to showcase the latest V-SLAM methodologies, offering clear selection criteria for researchers and developers to choose the right approach for their robotic applications. It chronologically presents the evolution of SLAM methods, highlighting key principles and providing comparative analyses between them. The paper focuses on the integration of the robotic ecosystem with a robot operating system (ROS) as Middleware, explores essential V-SLAM benchmark datasets, and presents demonstrative figures for each method’s workflow.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器人视觉 SLAM 综述:演变、特性和未来应用
视觉同步定位与映射(V-SLAM)在机器人系统领域,尤其是交互式协作移动机器人领域发挥着至关重要的作用。在现实世界的应用中,对机器人技术的依赖与日俱增,增加了任务执行的复杂性。因此,已经出现了多种 V-SLAM 方法来促进和简化机器人的功能。这项工作旨在展示最新的 V-SLAM 方法,为研究人员和开发人员提供明确的选择标准,以便为他们的机器人应用选择正确的方法。它按时间顺序介绍了 SLAM 方法的演变,突出了关键原则,并提供了它们之间的比较分析。论文重点介绍了作为中间件的机器人操作系统(ROS)与机器人生态系统的整合,探讨了重要的 V-SLAM 基准数据集,并展示了每种方法工作流程的演示图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Collective predictive coding hypothesis: symbol emergence as decentralized Bayesian inference Adaptive satellite attitude control for varying masses using deep reinforcement learning Towards reconciling usability and usefulness of policy explanations for sequential decision-making systems Semantic learning from keyframe demonstration using object attribute constraints Gaze detection as a social cue to initiate natural human-robot collaboration in an assembly task
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1