Complex overlapping pedestrian target detection network based on the yolov3 model

Yuchi Zhang
{"title":"Complex overlapping pedestrian target detection network based on the yolov3 model","authors":"Yuchi Zhang","doi":"10.62051/rpbbxx55","DOIUrl":null,"url":null,"abstract":"This paper proposes a complex overlapping pedestrian target detection model based on yolov3 model by multi-scale feature fusion and context-aware mechanism. The SONY A7R3a camera shot the model on campus, and the data set was obtained after editing and collating. There were 358 high-definition videos with a resolution of 1920*1080, and the frame rate was 50HZ, about 179,000 frames. Through testing, this paper finds that compared with Single Shot Multibox Detector (SSD), the detection accuracy of the newly proposed model is slightly improved, the detection accuracy is the same as that of Faster R-CNN, and the detection accuracy of the newly proposed model is slightly worse than that of RetinaNet. However, the detection speed of Yolov3 is more than twice that of Single Shot Multibox Detector, RetinaNet and Faster R-CNN. The input size of Yolov3 is 320*320, and the processing of a single image only needs 22ms, so the detection speed of the simplified Yolov3 tiny is faster.","PeriodicalId":509968,"journal":{"name":"Transactions on Computer Science and Intelligent Systems Research","volume":"2017 42","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Computer Science and Intelligent Systems Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62051/rpbbxx55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a complex overlapping pedestrian target detection model based on yolov3 model by multi-scale feature fusion and context-aware mechanism. The SONY A7R3a camera shot the model on campus, and the data set was obtained after editing and collating. There were 358 high-definition videos with a resolution of 1920*1080, and the frame rate was 50HZ, about 179,000 frames. Through testing, this paper finds that compared with Single Shot Multibox Detector (SSD), the detection accuracy of the newly proposed model is slightly improved, the detection accuracy is the same as that of Faster R-CNN, and the detection accuracy of the newly proposed model is slightly worse than that of RetinaNet. However, the detection speed of Yolov3 is more than twice that of Single Shot Multibox Detector, RetinaNet and Faster R-CNN. The input size of Yolov3 is 320*320, and the processing of a single image only needs 22ms, so the detection speed of the simplified Yolov3 tiny is faster.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 yolov3 模型的复杂重叠行人目标检测网络
本文基于 yolov3 模型,通过多尺度特征融合和上下文感知机制,提出了一种复杂重叠行人目标检测模型。该模型由 SONY A7R3a 摄像机在校园内拍摄,经编辑整理后得到数据集。高清视频共 358 个,分辨率为 1920*1080,帧率为 50HZ,约 17.9 万帧。通过测试,本文发现与 Single Shot Multibox Detector(SSD)相比,新提出模型的检测精度略有提高,检测精度与 Faster R-CNN 相同,新提出模型的检测精度略差于 RetinaNet。但是,Yolov3 的检测速度是 Single Shot Multibox Detector、RetinaNet 和 Faster R-CNN 的两倍多。Yolov3 的输入大小为 320*320,处理单幅图像只需要 22 毫秒,因此简化后的 Yolov3 微小图像的检测速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated pricing and replenishment decisions for vegetable products based on evaluation optimization models Obstacle Detection Technology for Autonomous Driving Based on Deep Learning Automatic Selection and Parameter Optimization of Mathematical Models Based on Machine Learning Exploring the intersection of network security and database communication: a PostgreSQL Socket Connection case study Genetic Algorithm Based Path Planning for Seawater Depth Data Measurement in Real Scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1