Urban Growth Pattern Changes Model in Small Island of Aceh Province, Indonesia: Implications for Sustainable Spatial Development

Faisal Azwar, Ashfa Achmad, M. Mahidin, M. Irwansyah
{"title":"Urban Growth Pattern Changes Model in Small\nIsland of Aceh Province, Indonesia: Implications\nfor Sustainable Spatial Development","authors":"Faisal Azwar, Ashfa Achmad, M. Mahidin, M. Irwansyah","doi":"10.15244/pjoes/176796","DOIUrl":null,"url":null,"abstract":"Developing models for land use and land cover (LULC) and monitoring changes through predictive scenarios is crucial for supporting urban development strategies and improving our understanding of urban dynamics. Analysis of urban growth patterns based on LULC data from remote sensing using Geographic Information System (GIS) and Remote Sensing (RS) provides valuable insights into LULC changes. The CA-Markov model was used to predict LULC changes based on maps for 2012 and 2023, derived from satellite imagery using the maximum likelihood method, with an accuracy of 93% and 94% for each map. Analysis of urban growth patterns in Sabang City from 2013 to 2021 shows that the expansion of the built-up area is mainly driven by the conversion of bareland around the city center, with a 67% expansion pattern, 1% infilling pattern, and 16% outlying pattern. In Scenario 1, the growth of the built-up area in the city center is not significant, while in Scenario 2, the built-up area is projected to increase by 32 hectares to 742.6428 hectares by 2032. The urban growth pattern aligns better with Scenario 2, which emphasizes land conservation for forests and water bodies to preserve the highest carbon reserves from LULC changes .","PeriodicalId":510399,"journal":{"name":"Polish Journal of Environmental Studies","volume":"2012 34","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Environmental Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15244/pjoes/176796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Developing models for land use and land cover (LULC) and monitoring changes through predictive scenarios is crucial for supporting urban development strategies and improving our understanding of urban dynamics. Analysis of urban growth patterns based on LULC data from remote sensing using Geographic Information System (GIS) and Remote Sensing (RS) provides valuable insights into LULC changes. The CA-Markov model was used to predict LULC changes based on maps for 2012 and 2023, derived from satellite imagery using the maximum likelihood method, with an accuracy of 93% and 94% for each map. Analysis of urban growth patterns in Sabang City from 2013 to 2021 shows that the expansion of the built-up area is mainly driven by the conversion of bareland around the city center, with a 67% expansion pattern, 1% infilling pattern, and 16% outlying pattern. In Scenario 1, the growth of the built-up area in the city center is not significant, while in Scenario 2, the built-up area is projected to increase by 32 hectares to 742.6428 hectares by 2032. The urban growth pattern aligns better with Scenario 2, which emphasizes land conservation for forests and water bodies to preserve the highest carbon reserves from LULC changes .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
印度尼西亚亚齐省小岛的城市增长模式变化模型:对可持续空间发展的启示
开发土地利用和土地覆被 (LULC) 模型并通过预测情景监测变化,对于支持城市发展战略和提高我们对城市动态的理解至关重要。利用地理信息系统(GIS)和遥感技术(RS)对基于遥感技术获得的土地利用和土地覆被数据的城市增长模式进行分析,可为了解土地利用和土地覆被的变化提供有价值的信息。我们使用 CA-Markov 模型来预测基于 2012 年和 2023 年地图的 LULC 变化,这些地图是利用最大似然法从卫星图像中获取的,每张地图的准确率分别为 93% 和 94%。对沙邦市 2013 年至 2021 年城市增长模式的分析表明,建成区的扩张主要是由市中心周围裸地的转化所驱动,扩张模式占 67%,填充模式占 1%,外围模式占 16%。在情景 1 中,市中心建成区的增长并不显著,而在情景 2 中,预计到 2032 年建成区面积将增加 32 公顷,达到 742.6428 公顷。城市增长模式与情景 2 更为吻合,情景 2 强调森林和水体的土地保护,以从 LULC 变化中保留最高的碳储量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Straw Biochar Production and Carbon Emission Reduction Potential in the Yangtze River Economic Belt Region Impact of Biogas Slurry on Physiological and Antioxidant Mechanisms of Wheat Under Drought Stress Adsorption of Reactive Blue 13 from Dyeing Wastewater onto Mesoporous Carbon Xerogels Molecular Mechanisms Underlying Triple and Single-Capsule Sesame (Sesamum Indicum L.) Varieties and Their Antioxidant Enzyme Activities Has Green Credit Promoted High-Quality Economic Development? Evidence from China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1