Progress of preclinical research on induced pluripotent stem cell therapy for acute myocardial infarction.

Songyan Cai, Qingyuan Dai
{"title":"Progress of preclinical research on induced pluripotent stem cell therapy for acute myocardial infarction.","authors":"Songyan Cai, Qingyuan Dai","doi":"10.3724/zdxbyxb-2023-0402","DOIUrl":null,"url":null,"abstract":"Induced pluripotent stem cells (iPSCs) are obtained by introducing exogenous genes or adding chemicals to the culture medium to induce somatic cell differentiation. iPSCs have the ability to differentiate into all three embryonic cell lines, similar to embryonic stem cells. iPSCs can differentiate into cardiac muscle cells through two-dimensional differentiation methods such as monolayer cell culture and co-culture, or through embryoid body and scaffold-based three-dimensional differentiation methods. In addition, the process of iPSCs differentiation into cardiac muscle cells also requires activation or inhibition of specific signaling pathways,such as Wnt, BMP, Notch signaling pathways to mimic the development of the heart in vivo. In recent years, cell suspension culture by bioreactors has been able to produce large number of iPSCs derived cardiac muscle cells (iPSC-CMs). Before transplantation it is necessary to purify iPSC-CMs through metabolic regulation or cell sorting to eliminate undifferentiated iPSCs, which may lead to teratoma formation. The transplantation methods for iPSC-CMs are mainly injection of cell suspension and transplantation of cell patches into the infarcted myocardium. Animal studies have shown that transplantation of iPSC-CMs into the infarcted myocardium can improve cardiac function. This article reviews the progress of preclinical studies on iPSC-CMs therapy for acute myocardial infarction and discusses the limitations and challenges of its clinical application to provide references for further clinical research and application.","PeriodicalId":24007,"journal":{"name":"Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3724/zdxbyxb-2023-0402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Induced pluripotent stem cells (iPSCs) are obtained by introducing exogenous genes or adding chemicals to the culture medium to induce somatic cell differentiation. iPSCs have the ability to differentiate into all three embryonic cell lines, similar to embryonic stem cells. iPSCs can differentiate into cardiac muscle cells through two-dimensional differentiation methods such as monolayer cell culture and co-culture, or through embryoid body and scaffold-based three-dimensional differentiation methods. In addition, the process of iPSCs differentiation into cardiac muscle cells also requires activation or inhibition of specific signaling pathways,such as Wnt, BMP, Notch signaling pathways to mimic the development of the heart in vivo. In recent years, cell suspension culture by bioreactors has been able to produce large number of iPSCs derived cardiac muscle cells (iPSC-CMs). Before transplantation it is necessary to purify iPSC-CMs through metabolic regulation or cell sorting to eliminate undifferentiated iPSCs, which may lead to teratoma formation. The transplantation methods for iPSC-CMs are mainly injection of cell suspension and transplantation of cell patches into the infarcted myocardium. Animal studies have shown that transplantation of iPSC-CMs into the infarcted myocardium can improve cardiac function. This article reviews the progress of preclinical studies on iPSC-CMs therapy for acute myocardial infarction and discusses the limitations and challenges of its clinical application to provide references for further clinical research and application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
诱导多能干细胞治疗急性心肌梗死的临床前研究进展。
诱导多能干细胞(iPSCs)是通过导入外源基因或在培养基中添加化学物质诱导体细胞分化而获得的。iPSCs与胚胎干细胞类似,具有分化成所有三种胚胎细胞系的能力。此外,iPSCs 分化为心肌细胞的过程还需要激活或抑制特定的信号通路,如 Wnt、BMP、Notch 信号通路,以模拟体内心脏的发育过程。近年来,利用生物反应器进行细胞悬浮培养已能产生大量的 iPSCs 衍生心肌细胞(iPSC-CMs)。在移植前,有必要通过代谢调节或细胞分拣纯化 iPSC-CMs,以剔除可能导致畸胎瘤形成的未分化 iPSCs。iPSC-CMs的移植方法主要有细胞悬液注射和将细胞补片移植到梗死的心肌中。动物实验表明,将 iPSC-CMs 移植到梗死心肌可改善心功能。本文回顾了iPSC-CMs治疗急性心肌梗死的临床前研究进展,探讨了其临床应用的局限性和挑战,为进一步的临床研究和应用提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
67
期刊最新文献
Causal relationship between ferroptosis-related gene HSPA5 and hepatocellular carcinoma: study based on mendelian randomization and mediation analysis. Determination of vitamin D3 content in cod liver oil using column-switching technique. Preparation of decellularized bone graft material with supercritical carbon dioxide extraction technique. [Anatomy and function of the canalis sinuosus and its injury prevention and treatment strategies in implant surgery]. [Research progress on the regulatory cell death of osteoblasts in periodontitis].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1