A comprehensive review of machine learning techniques for multi-omics data integration: challenges and applications in precision oncology.

IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Briefings in Functional Genomics Pub Date : 2024-04-10 DOI:10.1093/bfgp/elae013
Debabrata Acharya, Anirban Mukhopadhyay
{"title":"A comprehensive review of machine learning techniques for multi-omics data integration: challenges and applications in precision oncology.","authors":"Debabrata Acharya, Anirban Mukhopadhyay","doi":"10.1093/bfgp/elae013","DOIUrl":null,"url":null,"abstract":"Multi-omics data play a crucial role in precision medicine, mainly to understand the diverse biological interaction between different omics. Machine learning approaches have been extensively employed in this context over the years. This review aims to comprehensively summarize and categorize these advancements, focusing on the integration of multi-omics data, which includes genomics, transcriptomics, proteomics and metabolomics, alongside clinical data. We discuss various machine learning techniques and computational methodologies used for integrating distinct omics datasets and provide valuable insights into their application. The review emphasizes both the challenges and opportunities present in multi-omics data integration, precision medicine and patient stratification, offering practical recommendations for method selection in various scenarios. Recent advances in deep learning and network-based approaches are also explored, highlighting their potential to harmonize diverse biological information layers. Additionally, we present a roadmap for the integration of multi-omics data in precision oncology, outlining the advantages, challenges and implementation difficulties. Hence this review offers a thorough overview of current literature, providing researchers with insights into machine learning techniques for patient stratification, particularly in precision oncology. Contact:  anirban@klyuniv.ac.in.","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in Functional Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elae013","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-omics data play a crucial role in precision medicine, mainly to understand the diverse biological interaction between different omics. Machine learning approaches have been extensively employed in this context over the years. This review aims to comprehensively summarize and categorize these advancements, focusing on the integration of multi-omics data, which includes genomics, transcriptomics, proteomics and metabolomics, alongside clinical data. We discuss various machine learning techniques and computational methodologies used for integrating distinct omics datasets and provide valuable insights into their application. The review emphasizes both the challenges and opportunities present in multi-omics data integration, precision medicine and patient stratification, offering practical recommendations for method selection in various scenarios. Recent advances in deep learning and network-based approaches are also explored, highlighting their potential to harmonize diverse biological information layers. Additionally, we present a roadmap for the integration of multi-omics data in precision oncology, outlining the advantages, challenges and implementation difficulties. Hence this review offers a thorough overview of current literature, providing researchers with insights into machine learning techniques for patient stratification, particularly in precision oncology. Contact:  anirban@klyuniv.ac.in.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多组学数据整合机器学习技术综述:精准肿瘤学的挑战与应用。
多组学数据在精准医疗中发挥着至关重要的作用,主要是为了了解不同组学之间多种多样的生物相互作用。多年来,机器学习方法在这方面得到了广泛应用。本综述旨在对这些进展进行全面总结和分类,重点关注多组学数据(包括基因组学、转录组学、蛋白质组学和代谢组学)与临床数据的整合。我们讨论了用于整合不同组学数据集的各种机器学习技术和计算方法,并就其应用提供了有价值的见解。综述强调了多组学数据整合、精准医疗和患者分层所面临的挑战和机遇,为各种情况下的方法选择提供了实用建议。文中还探讨了深度学习和基于网络的方法的最新进展,强调了它们在协调不同生物信息层方面的潜力。此外,我们还提出了在精准肿瘤学中整合多组学数据的路线图,概述了优势、挑战和实施困难。因此,这篇综述全面概述了当前的文献,为研究人员提供了用于患者分层的机器学习技术的见解,尤其是在精准肿瘤学领域。联系方式:anirban@klyuniv.ac.in.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Briefings in Functional Genomics
Briefings in Functional Genomics BIOTECHNOLOGY & APPLIED MICROBIOLOGY-GENETICS & HEREDITY
CiteScore
6.30
自引率
2.50%
发文量
37
审稿时长
6-12 weeks
期刊介绍: Briefings in Functional Genomics publishes high quality peer reviewed articles that focus on the use, development or exploitation of genomic approaches, and their application to all areas of biological research. As well as exploring thematic areas where these techniques and protocols are being used, articles review the impact that these approaches have had, or are likely to have, on their field. Subjects covered by the Journal include but are not restricted to: the identification and functional characterisation of coding and non-coding features in genomes, microarray technologies, gene expression profiling, next generation sequencing, pharmacogenomics, phenomics, SNP technologies, transgenic systems, mutation screens and genotyping. Articles range in scope and depth from the introductory level to specific details of protocols and analyses, encompassing bacterial, fungal, plant, animal and human data. The editorial board welcome the submission of review articles for publication. Essential criteria for the publication of papers is that they do not contain primary data, and that they are high quality, clearly written review articles which provide a balanced, highly informative and up to date perspective to researchers in the field of functional genomics.
期刊最新文献
Prioritization of candidate genes for major QTLs governing yield traits employing integrated multi-omics approach in rice (Oryza sativa L.). Environmental community transcriptomics: strategies and struggles. A review: simulation tools for genome-wide interaction studies. Beyond the hype: using AI, big data, wearable devices, and the internet of things for high-throughput livestock phenotyping. Enhancing novel isoform discovery: leveraging nanopore long-read sequencing and machine learning approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1