Sara Ganassin, Alessandra Galli, S. Ouzounov, Claudio Narduzzi
{"title":"Patient-independent, MHD-robust R-peak detection for retrospective gating in cardiac MRI imaging.","authors":"Sara Ganassin, Alessandra Galli, S. Ouzounov, Claudio Narduzzi","doi":"10.1088/1361-6579/ad3d27","DOIUrl":null,"url":null,"abstract":"OBJECTIVE\nIn cardiovascular magnetic resonance (MR) imaging, synchronization of image acquisition with heart motion (called gating) is performed by detecting R-peaks in electrocardiogram (ECG) signals. Effective gating is challenging with 3T and 7T scanners, due to severe distortion of ECG signals caused by magnetohydrodynamic effects associated with intense magnetic fields. This work proposes an efficient retrospective gating strategy that requires no prior training outside the scanner and investigates the optimal number of leads in the ECG acquisition set.\n\n\nAPPROACH\nThe proposed method was developed on a data set of 12-lead ECG signals acquired within 3T and 7T scanners. Independent component analysis (ICA) is employed to effectively separate components related with cardiac activity from those associated to noise. Subsequently, an automatic selection process identifies the components best suited for accurate R peak detection, based on heart rate estimation metrics and frequency content quality indexes.\n\n\nMAIN RESULTS\nThe proposed method is robust to different B0 field strengths, as evidenced by R-peak detection errors of 2.4 ± 3.1 ms and 10.6 ± 15.4 ms for data acquired with 3T and 7T scanners, respectively. Its effectiveness was verified with various subject orientations, showcasing applicability in diverse clinical scenarios. The work reveals that ECG leads can be limited in number to three, or at most five for 7T field strengths, without significant degradation in R-peak detection accuracy.\n\n\nSIGNIFICANCE\nThe approach requires no preliminary ECG acquisition for R-peak detector training, reducing overall examination time. The gating process is designed to be adaptable, completely blind and independent of patient characteristics, allowing wide and rapid deployment in clinical practice. The potential to employ a significantly limited set of leads enhances patient comfort.","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ad3d27","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
OBJECTIVE
In cardiovascular magnetic resonance (MR) imaging, synchronization of image acquisition with heart motion (called gating) is performed by detecting R-peaks in electrocardiogram (ECG) signals. Effective gating is challenging with 3T and 7T scanners, due to severe distortion of ECG signals caused by magnetohydrodynamic effects associated with intense magnetic fields. This work proposes an efficient retrospective gating strategy that requires no prior training outside the scanner and investigates the optimal number of leads in the ECG acquisition set.
APPROACH
The proposed method was developed on a data set of 12-lead ECG signals acquired within 3T and 7T scanners. Independent component analysis (ICA) is employed to effectively separate components related with cardiac activity from those associated to noise. Subsequently, an automatic selection process identifies the components best suited for accurate R peak detection, based on heart rate estimation metrics and frequency content quality indexes.
MAIN RESULTS
The proposed method is robust to different B0 field strengths, as evidenced by R-peak detection errors of 2.4 ± 3.1 ms and 10.6 ± 15.4 ms for data acquired with 3T and 7T scanners, respectively. Its effectiveness was verified with various subject orientations, showcasing applicability in diverse clinical scenarios. The work reveals that ECG leads can be limited in number to three, or at most five for 7T field strengths, without significant degradation in R-peak detection accuracy.
SIGNIFICANCE
The approach requires no preliminary ECG acquisition for R-peak detector training, reducing overall examination time. The gating process is designed to be adaptable, completely blind and independent of patient characteristics, allowing wide and rapid deployment in clinical practice. The potential to employ a significantly limited set of leads enhances patient comfort.
期刊介绍:
Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation.
Papers are published on topics including:
applied physiology in illness and health
electrical bioimpedance, optical and acoustic measurement techniques
advanced methods of time series and other data analysis
biomedical and clinical engineering
in-patient and ambulatory monitoring
point-of-care technologies
novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems.
measurements in molecular, cellular and organ physiology and electrophysiology
physiological modeling and simulation
novel biomedical sensors, instruments, devices and systems
measurement standards and guidelines.