Multiple roles of brassinosteroid signaling in vascular development.

Tomoyuki Furuya, Kyoko Ohashi-Ito, Yuki Kondo
{"title":"Multiple roles of brassinosteroid signaling in vascular development.","authors":"Tomoyuki Furuya, Kyoko Ohashi-Ito, Yuki Kondo","doi":"10.1093/pcp/pcae037","DOIUrl":null,"url":null,"abstract":"Brassinosteroids (BRs) are plant steroid hormones that control growth and stress responses. In the context of development, BRs play diverse roles in controlling cell differentiation and tissue patterning. The vascular system, which is essential for transporting water and nutrients throughout the plant body, initially establishes a tissue pattern during primary development and then dramatically increases the number of vascular cells during secondary development. This complex developmental process is properly regulated by a network consisting of various hormonal signalling pathways. Genetic studies have revealed that mutants defective in BR biosynthesis or the BR signalling cascade exhibit a multifaceted vascular development phenotype. Furthermore, BR crosstalk with other plant hormones, including peptide hormones, coordinately regulates vascular development. Recently, the involvement of BR in vascular development, especially in xylem differentiation, has also been suggested in plant species other than the model plant Arabidopsis thaliana. In this review, we briefly summarize the recent findings on the roles of BR in primary and secondary vascular development in Arabidopsis and other species.","PeriodicalId":502140,"journal":{"name":"Plant & Cell Physiology","volume":"80 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant & Cell Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pcp/pcae037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Brassinosteroids (BRs) are plant steroid hormones that control growth and stress responses. In the context of development, BRs play diverse roles in controlling cell differentiation and tissue patterning. The vascular system, which is essential for transporting water and nutrients throughout the plant body, initially establishes a tissue pattern during primary development and then dramatically increases the number of vascular cells during secondary development. This complex developmental process is properly regulated by a network consisting of various hormonal signalling pathways. Genetic studies have revealed that mutants defective in BR biosynthesis or the BR signalling cascade exhibit a multifaceted vascular development phenotype. Furthermore, BR crosstalk with other plant hormones, including peptide hormones, coordinately regulates vascular development. Recently, the involvement of BR in vascular development, especially in xylem differentiation, has also been suggested in plant species other than the model plant Arabidopsis thaliana. In this review, we briefly summarize the recent findings on the roles of BR in primary and secondary vascular development in Arabidopsis and other species.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
黄铜类固醇信号在血管发育中的多重作用
芸苔素甾醇(BRs)是一种植物类固醇激素,可控制生长和胁迫反应。在发育过程中,芸苔素甾醇在控制细胞分化和组织形态方面发挥着多种作用。维管系统是植物体内水分和养分的重要运输工具,它最初在初级发育过程中建立组织模式,然后在次级发育过程中大幅增加维管细胞的数量。这一复杂的发育过程受到由各种激素信号通路组成的网络的适当调控。遗传研究发现,BR 生物合成或 BR 信号级联缺陷的突变体表现出多方面的血管发育表型。此外,BR 与其他植物激素(包括肽类激素)之间的相互作用也协调地调节着血管的发育。最近,除模式植物拟南芥外,其他植物物种也出现了BR参与维管发育,尤其是木质部分化的现象。在这篇综述中,我们简要总结了有关拟南芥和其他物种中 BR 在初级和次级维管发育中作用的最新发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary Systems Biology Identifies Genetic Trade-offs In Rice Defense Against Above- and Belowground Attackers At2-MMP is required for attenuation of cell proliferation during wound healing in incised Arabidopsis inflorescence stems Enhancement of Sesquiterpenoid Production by Methyl Jasmonate in Atractylodes chinensis Adventitious Root Culture and its Transcriptional Regulation Highly sensitive strigolactone perception by a divergent clade KAI2 receptor in a facultative root parasitic plant, Phtheirospermum japonicum Dominant-negative KAI2d paralogs putatively attenuate strigolactone responses in root parasitic plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1