Hong Wu Zhu, Yusong Pan, Yuanqing Wang, Yanlei Xiang, Rong Han, Run Huang
{"title":"Photocatalytic Activity and Antibacterial Properties of ZnO/CNTs Composites","authors":"Hong Wu Zhu, Yusong Pan, Yuanqing Wang, Yanlei Xiang, Rong Han, Run Huang","doi":"10.4028/p-03r9ba","DOIUrl":null,"url":null,"abstract":"Photocatalytic technology is one of the promising technologies for wastewater treatment. Herein, zinc oxide/multi-walled carbon nanotubes (ZnO/CNTs) photocatalyst was successfully prepared by hydrothermal method with combining in-situ synthesis technology. The micro-morphology, crystalline structure, surface chemical elements, and optical properties were characterized by SEM, TEM, XRD, FTIR, UV-Vis, and DRS technologies. The ZnO/CNTs photo-catalyst exhibited enhancement photo activity for degradation of organic pollutants under simulated light irradiation. Specifically, the photo-catalytic activity of the ZnO/CNTs catalysts improved with the rise of CNTs content in the composites. Investigation on the photo-degradation mechanism verified that the presence of CNTs in the catalyst not only optimized the band structure of ZnO semiconductor but also contributed to the transfer of photo-generated electrons and reducing the recombination of electron-hole pairs due to its excellent conductivity. Moreover, the active radical groups such as superoxide radical (O-2), hole (h+), and hydroxyl radical (·OH) played the dominated role for the pollutants degradation under the simulated sunlight irradiation. In addition, ZCT20 catalysts and light irradiation had synergistic effects on antibacterial activity, whose antibacterial rates against E. coli and S. aureus were up to 99.96% and 99.94%, respectively. Investigation on antibacterial mechanisms revealed that the existence of ROS and the continuous release of Zn2+ played an important role for improving the antibacterial activity of the ZCT20 catalyst under the simulated sunlight irradiation.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4028/p-03r9ba","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Photocatalytic technology is one of the promising technologies for wastewater treatment. Herein, zinc oxide/multi-walled carbon nanotubes (ZnO/CNTs) photocatalyst was successfully prepared by hydrothermal method with combining in-situ synthesis technology. The micro-morphology, crystalline structure, surface chemical elements, and optical properties were characterized by SEM, TEM, XRD, FTIR, UV-Vis, and DRS technologies. The ZnO/CNTs photo-catalyst exhibited enhancement photo activity for degradation of organic pollutants under simulated light irradiation. Specifically, the photo-catalytic activity of the ZnO/CNTs catalysts improved with the rise of CNTs content in the composites. Investigation on the photo-degradation mechanism verified that the presence of CNTs in the catalyst not only optimized the band structure of ZnO semiconductor but also contributed to the transfer of photo-generated electrons and reducing the recombination of electron-hole pairs due to its excellent conductivity. Moreover, the active radical groups such as superoxide radical (O-2), hole (h+), and hydroxyl radical (·OH) played the dominated role for the pollutants degradation under the simulated sunlight irradiation. In addition, ZCT20 catalysts and light irradiation had synergistic effects on antibacterial activity, whose antibacterial rates against E. coli and S. aureus were up to 99.96% and 99.94%, respectively. Investigation on antibacterial mechanisms revealed that the existence of ROS and the continuous release of Zn2+ played an important role for improving the antibacterial activity of the ZCT20 catalyst under the simulated sunlight irradiation.
期刊介绍:
"Journal of Nano Research" (JNanoR) is a multidisciplinary journal, which publishes high quality scientific and engineering papers on all aspects of research in the area of nanoscience and nanotechnologies and wide practical application of achieved results.
"Journal of Nano Research" is one of the largest periodicals in the field of nanoscience and nanotechnologies. All papers are peer-reviewed and edited.
Authors retain the right to publish an extended and significantly updated version in another periodical.