Charge Critical Phenomena in a Field Heterostructure with Two-Dimensional Crystal

Solids Pub Date : 2024-04-06 DOI:10.3390/solids5020013
A. Danilyuk, D. Podryabinkin, Victor L. Shaposhnikov, S. Prischepa
{"title":"Charge Critical Phenomena in a Field Heterostructure with Two-Dimensional Crystal","authors":"A. Danilyuk, D. Podryabinkin, Victor L. Shaposhnikov, S. Prischepa","doi":"10.3390/solids5020013","DOIUrl":null,"url":null,"abstract":"The charge properties and regularities of mutual influence of the electro-physical parameters in a metal (M)/insulator (I)/two-dimensional crystal heterostructure were studied. In one case, the transition metal dichalcogenide (TMD) MoS2 was considered as a two-dimensional crystal, and in another the Weyl semi-metal (WSM) ZrTe5, representative of a quasi-two-dimensional crystal was chosen for this purpose. By self-consistently solving the electrostatic equations of the heterostructures under consideration and the Fermi–Dirac distribution, the relationship between such parameters as the concentration of charge carriers, chemical potential, and quantum capacitance of the TMD (WSM), as well as the capacitance of the I layer and the interface capacitance I–TMD (WSM), and their dependence on the field electrode potential, have been derived. The conditions for the emergence of charge instability and the critical phenomena caused by it are also determined.","PeriodicalId":21906,"journal":{"name":"Solids","volume":"16 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/solids5020013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The charge properties and regularities of mutual influence of the electro-physical parameters in a metal (M)/insulator (I)/two-dimensional crystal heterostructure were studied. In one case, the transition metal dichalcogenide (TMD) MoS2 was considered as a two-dimensional crystal, and in another the Weyl semi-metal (WSM) ZrTe5, representative of a quasi-two-dimensional crystal was chosen for this purpose. By self-consistently solving the electrostatic equations of the heterostructures under consideration and the Fermi–Dirac distribution, the relationship between such parameters as the concentration of charge carriers, chemical potential, and quantum capacitance of the TMD (WSM), as well as the capacitance of the I layer and the interface capacitance I–TMD (WSM), and their dependence on the field electrode potential, have been derived. The conditions for the emergence of charge instability and the critical phenomena caused by it are also determined.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维晶体场异质结构中的电荷临界现象
研究了金属(M)/绝缘体(I)/二维晶体异质结构中的电荷特性和电物理参数相互影响的规律性。其中一种情况是将过渡金属二卤化物(TMD)MoS2 视为二维晶体,另一种情况是选择韦尔半金属(WSM)ZrTe5 作为准二维晶体的代表。通过自洽地求解所考虑的异质结构的静电方程和费米-狄拉克分布,得出了电荷载流子浓度、化学势和 TMD(WSM)量子电容等参数之间的关系,以及 I 层电容和 I-TMD (WSM)界面电容之间的关系,以及它们对场电极电势的依赖关系。此外,还确定了电荷不稳定性出现的条件及其引起的临界现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
0
期刊最新文献
Assessing Hydrogen Embrittlement in Pipeline Steels for Natural Gas-Hydrogen Blends: Implications for Existing Infrastructure Study of the Structure of Zn and Na Borophosphate Glasses Using X-ray and Neutron Scattering Techniques Taxifolin Adsorption on Nitrogenated Graphenes: Theoretical Insights Plasmon Excitation in the Interaction of Slow Singly Charged Argon Ions with Magnesium Critical Experiments and Thermodynamic Modeling of the Li2O-SiO2 System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1