Method for Large-scale Production of hIPSC Spheroids

IF 1 Q3 BIOLOGY Bio-protocol Pub Date : 2024-04-05 DOI:10.21769/BioProtoc.4965
Lucas Lemarié, Edwin-Joffrey Courtial, Jérôme Sohier
{"title":"Method for Large-scale Production of hIPSC Spheroids","authors":"Lucas Lemarié, Edwin-Joffrey Courtial, Jérôme Sohier","doi":"10.21769/BioProtoc.4965","DOIUrl":null,"url":null,"abstract":"Stem cell spheroids are rapidly becoming essential tools for a diverse array of applications ranging from tissue engineering to 3D cell models and fundamental biology. Given the increasing prominence of biotechnology, there is a pressing need to develop more accessible, efficient, and reproducible methods for producing these models. Various techniques such as hanging drop, rotating wall vessel, magnetic levitation, or microfluidics have been employed to generate spheroids. However, none of these methods facilitate the easy and efficient production of a large number of spheroids using a standard 6-well plate. Here, we present a novel method based on pellet culture (utilizing U-shaped microstructures) using a silicon mold produced through 3D printing, along with a detailed and illustrated manufacturing protocol. This technique enables the rapid production of reproducible and controlled spheroids (for 1× 106 cells, spheroids = 130 ± 10 μm) from human induced pluripotent stem cells (hIPSCs) within a short time frame (24 h). Importantly, the method allows the production of large quantities (2 × 104 spheroids for 1 × 106 cells) in an accessible and cost-effective manner, thanks to the use of a reusable mold. The protocols outlined herein are easily implementable, and all the necessary files for the method replication are freely available. Key features • Provision of 3D mold files (STL) to produce silicone induction device of spheroids using 3D printing. • Cost-effective, reusable, and autoclavable device capable of generating up to 1.2 × 104 spheroids of tunable diameters in a 6-well plate. • Spheroids induction with multiple hIPSC cell lines. • Robust and reproducible production method suitable for routine laboratory use.","PeriodicalId":93907,"journal":{"name":"Bio-protocol","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-protocol","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.21769/BioProtoc.4965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Stem cell spheroids are rapidly becoming essential tools for a diverse array of applications ranging from tissue engineering to 3D cell models and fundamental biology. Given the increasing prominence of biotechnology, there is a pressing need to develop more accessible, efficient, and reproducible methods for producing these models. Various techniques such as hanging drop, rotating wall vessel, magnetic levitation, or microfluidics have been employed to generate spheroids. However, none of these methods facilitate the easy and efficient production of a large number of spheroids using a standard 6-well plate. Here, we present a novel method based on pellet culture (utilizing U-shaped microstructures) using a silicon mold produced through 3D printing, along with a detailed and illustrated manufacturing protocol. This technique enables the rapid production of reproducible and controlled spheroids (for 1× 106 cells, spheroids = 130 ± 10 μm) from human induced pluripotent stem cells (hIPSCs) within a short time frame (24 h). Importantly, the method allows the production of large quantities (2 × 104 spheroids for 1 × 106 cells) in an accessible and cost-effective manner, thanks to the use of a reusable mold. The protocols outlined herein are easily implementable, and all the necessary files for the method replication are freely available. Key features • Provision of 3D mold files (STL) to produce silicone induction device of spheroids using 3D printing. • Cost-effective, reusable, and autoclavable device capable of generating up to 1.2 × 104 spheroids of tunable diameters in a 6-well plate. • Spheroids induction with multiple hIPSC cell lines. • Robust and reproducible production method suitable for routine laboratory use.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模生产 hIPSC 球形体的方法
干细胞球体正迅速成为从组织工程到三维细胞模型和基础生物学等各种应用的基本工具。鉴于生物技术的重要性日益突出,人们迫切需要开发更方便、高效和可重复的方法来制作这些模型。目前已采用悬滴法、旋转壁容器法、磁悬浮法或微流体法等多种技术来生成球形体。然而,这些方法都无法使用标准的 6 孔板方便高效地生成大量球形体。在此,我们介绍一种基于球状培养(利用 U 型微结构)的新方法,该方法使用通过 3D 打印制作的硅模具,并附有详细图解的制造规程。该技术可在短时间内(24 小时)从人类诱导多能干细胞(hIPSCs)快速生产出可重复、可控制的球状细胞(对于 1×106 个细胞,球状细胞 = 130 ± 10 μm)。重要的是,由于使用了可重复使用的模具,该方法能以方便、经济的方式生产大量球形细胞(1×106 个细胞生产 2×104 个球形细胞)。本文概述的方案很容易实施,复制该方法所需的所有文件均可免费获得。主要特点 - 提供三维模具文件(STL),利用三维打印技术生产球形硅胶诱导装置。- 具有成本效益、可重复使用和高压灭菌的装置,能够在 6 孔板中生成多达 1.2 × 104 个直径可调的球体。- 用多种 hIPSC 细胞系诱导球形体。- 稳健、可重复的生产方法,适合实验室常规使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
期刊最新文献
An Automated pre-Dilution Setup for Von Willebrand Factor Activity Assays. An Imaging-Based Assay to Measure the Location of PD-1 at the Immune Synapse for Testing the Binding Efficacy of Anti-PD-1 and Anti-PD-L1 Antibodies. Endothelin-1-Induced Persistent Ischemia in a Chicken Embryo Model. Evaluating Mechanisms of Soil Microbiome Suppression of Striga Infection in Sorghum. Laser-Assisted Microdissection and High-Throughput RNA Sequencing of the Arabidopsis Gynoecium Medial and Lateral Domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1