Liyi Zhang, Min Fu, Teng Fei, Ming K. Lim, Ming-Lang Tseng
{"title":"A cold chain logistics distribution optimization model: Beijing-Tianjin-Hebei region low-carbon site selection","authors":"Liyi Zhang, Min Fu, Teng Fei, Ming K. Lim, Ming-Lang Tseng","doi":"10.1108/imds-08-2023-0558","DOIUrl":null,"url":null,"abstract":"PurposeThis study reduces carbon emission in logistics distribution to realize the low-carbon site optimization for a cold chain logistics distribution center problem.Design/methodology/approachThis study involves cooling, commodity damage and carbon emissions and establishes the site selection model of low-carbon cold chain logistics distribution center aiming at minimizing total cost, and grey wolf optimization algorithm is used to improve the artificial fish swarm algorithm to solve a cold chain logistics distribution center problem.FindingsThe optimization results and stability of the improved algorithm are significantly improved and compared with other intelligent algorithms. The result is confirmed to use the Beijing-Tianjin-Hebei region site selection. This study reduces composite cost of cold chain logistics and reduces damage to environment to provide a new idea for developing cold chain logistics.Originality/valueThis study contributes to propose an optimization model of low-carbon cold chain logistics site by considering various factors affecting cold chain products and converting carbon emissions into costs. Prior studies are lacking to take carbon emissions into account in the logistics process. The main trend of current economic development is low-carbon and the logistics distribution is an energy consumption and high carbon emissions.","PeriodicalId":270213,"journal":{"name":"Industrial Management & Data Systems","volume":"21 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Management & Data Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/imds-08-2023-0558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
PurposeThis study reduces carbon emission in logistics distribution to realize the low-carbon site optimization for a cold chain logistics distribution center problem.Design/methodology/approachThis study involves cooling, commodity damage and carbon emissions and establishes the site selection model of low-carbon cold chain logistics distribution center aiming at minimizing total cost, and grey wolf optimization algorithm is used to improve the artificial fish swarm algorithm to solve a cold chain logistics distribution center problem.FindingsThe optimization results and stability of the improved algorithm are significantly improved and compared with other intelligent algorithms. The result is confirmed to use the Beijing-Tianjin-Hebei region site selection. This study reduces composite cost of cold chain logistics and reduces damage to environment to provide a new idea for developing cold chain logistics.Originality/valueThis study contributes to propose an optimization model of low-carbon cold chain logistics site by considering various factors affecting cold chain products and converting carbon emissions into costs. Prior studies are lacking to take carbon emissions into account in the logistics process. The main trend of current economic development is low-carbon and the logistics distribution is an energy consumption and high carbon emissions.