The role of temperature and drying cycles on impurity deposition in drying porous media

Ellen K. Luckins, Christopher Breward, Ian Griffiths, Colin Please
{"title":"The role of temperature and drying cycles on impurity deposition in drying porous media","authors":"Ellen K. Luckins, Christopher Breward, Ian Griffiths, Colin Please","doi":"10.1209/0295-5075/ad3a9a","DOIUrl":null,"url":null,"abstract":"\n We consider a liquid containing impurities saturating a porous material; when the liquid evaporates, the impurities are deposited within the material. Applications include filtration and waterproof textiles. We present a mathematical model incorporating coupling between evaporation, accumulation and transport of the impurities, and the impact of the deposited impurities on the transport of both the suspended impurities and the liquid vapour. By simulating our model numerically, we investigate the role of temperature and repeated drying cycles on the location of the deposited impurities. Higher temperatures increase the evaporation rate so that impurities are transported further into porous material before depositing than for lower temperatures. We quantify two distinct parameter regimes in which the material clogs: (i) the dry-clogging (high-temperature) regime, in which impurities are pushed far into the material before clogging, and (ii) the wet-clogging (high-impurity) regime, in which liquid becomes trapped by the clogging. Clogging restricts the extent to which drying time can be reduced by increasing the temperature.","PeriodicalId":503117,"journal":{"name":"Europhysics Letters","volume":"26 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Europhysics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad3a9a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a liquid containing impurities saturating a porous material; when the liquid evaporates, the impurities are deposited within the material. Applications include filtration and waterproof textiles. We present a mathematical model incorporating coupling between evaporation, accumulation and transport of the impurities, and the impact of the deposited impurities on the transport of both the suspended impurities and the liquid vapour. By simulating our model numerically, we investigate the role of temperature and repeated drying cycles on the location of the deposited impurities. Higher temperatures increase the evaporation rate so that impurities are transported further into porous material before depositing than for lower temperatures. We quantify two distinct parameter regimes in which the material clogs: (i) the dry-clogging (high-temperature) regime, in which impurities are pushed far into the material before clogging, and (ii) the wet-clogging (high-impurity) regime, in which liquid becomes trapped by the clogging. Clogging restricts the extent to which drying time can be reduced by increasing the temperature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
温度和干燥周期对干燥多孔介质中杂质沉积的影响
我们认为,含有杂质的液体使多孔材料饱和;当液体蒸发时,杂质沉积在材料内部。其应用包括过滤和防水纺织品。我们提出了一个数学模型,其中包含杂质蒸发、沉积和传输之间的耦合,以及沉积杂质对悬浮杂质和液体蒸汽传输的影响。通过对模型进行数值模拟,我们研究了温度和重复干燥循环对沉积杂质位置的影响。温度越高,蒸发率越高,因此杂质在沉积之前会比低温时更多地进入多孔材料。我们对材料堵塞的两种不同参数状态进行了量化:(i) 干堵塞(高温)状态,在这种状态下,杂质在堵塞之前就已被推入材料内部;(ii) 湿堵塞(高杂质)状态,在这种状态下,液体会被堵塞物截留。堵塞限制了通过提高温度缩短干燥时间的程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large self-heating by trapped-flux reduction in Sn-Pb solders Imperfect diffusion-controlled reactions for stochastic processes with memory Schrödinger evolution of a scalar field in Riemannian and pseudo Riemannian expanding metrics Evolution of the crack patterns in nanostructured films with subsequent wetting and drying cycles Narrowband stimulated Raman scattering and molecular modulation in anti-resonant hollow-core fibres
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1