Multicriteria decision-making for optimization of welding parameters in cold metal transfer and pulse metal-inert gas weld bead of AA2099-T86 alloy using CRITIC and ROV methods
{"title":"Multicriteria decision-making for optimization of welding parameters in cold metal transfer and pulse metal-inert gas weld bead of AA2099-T86 alloy using CRITIC and ROV methods","authors":"Satyaveer Singh, N. Yuvaraj, Reeta Wattal","doi":"10.1108/mmms-07-2023-0250","DOIUrl":null,"url":null,"abstract":"PurposeThe criteria importance through intercriteria correlation (CRITIC) and range of value (ROV) combined methods were used to determine a single index for all multiple responses.Design/methodology/approachThis paper used cold metal transfer (CMT) and pulse metal-inert gas (MIG) welding processes to study the weld-on-bead geometry of AA2099-T86 alloy. This study used Taguchi's approach to find the optimal setting of the input welding parameters. The welding current, welding speed and contact-tip-to workpiece distance were the input welding parameters for finding the output responses, i.e. weld penetration, dilution and heat input. The L9 orthogonal array of Taguchi's approach was used to find out the optimal setting of the input parameters.FindingsThe optimal input welding parameters were determined with combined output responses. The predicted optimum welding input parameters were validated through confirmation tests. Analysis of variance showed that welding speed is the most influential factor in determining the weld bead geometry of the CMT and pulse MIG welding techniques.Originality/valueThe heat input and weld bead geometry are compared in both welding processes. The CMT welding samples show superior defect-free weld beads than pulse MIG welding due to lesser heat input and lesser dilution.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"23 9","pages":""},"PeriodicalIF":17.7000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/mmms-07-2023-0250","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
PurposeThe criteria importance through intercriteria correlation (CRITIC) and range of value (ROV) combined methods were used to determine a single index for all multiple responses.Design/methodology/approachThis paper used cold metal transfer (CMT) and pulse metal-inert gas (MIG) welding processes to study the weld-on-bead geometry of AA2099-T86 alloy. This study used Taguchi's approach to find the optimal setting of the input welding parameters. The welding current, welding speed and contact-tip-to workpiece distance were the input welding parameters for finding the output responses, i.e. weld penetration, dilution and heat input. The L9 orthogonal array of Taguchi's approach was used to find out the optimal setting of the input parameters.FindingsThe optimal input welding parameters were determined with combined output responses. The predicted optimum welding input parameters were validated through confirmation tests. Analysis of variance showed that welding speed is the most influential factor in determining the weld bead geometry of the CMT and pulse MIG welding techniques.Originality/valueThe heat input and weld bead geometry are compared in both welding processes. The CMT welding samples show superior defect-free weld beads than pulse MIG welding due to lesser heat input and lesser dilution.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.