Biological, physical and morphological factors for the programming of a novel microbial hygromorphic material.

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Bioinspiration & Biomimetics Pub Date : 2024-04-03 DOI:10.1088/1748-3190/ad3a4d
E. Birch, Ben Bridgens, Meng Zhang, M. Dade-Robertson
{"title":"Biological, physical and morphological factors for the programming of a novel microbial hygromorphic material.","authors":"E. Birch, Ben Bridgens, Meng Zhang, M. Dade-Robertson","doi":"10.1088/1748-3190/ad3a4d","DOIUrl":null,"url":null,"abstract":"The urgency for energy efficient, responsive architectures has propelled smart material development to the forefront of scientific and architectural research. This paper explores biological, physical, and morphological factors influencing the programming of a novel microbial-based smart hybrid material which is responsive to changes in environmental humidity. Hygromorphs respond passively, without energy input, by expanding in high humidity and contracting in low humidity. Bacillus subtilis develops environmentally robust, hygromorphic spores which may be harnessed within a bilayer to generate a deflection response with potential for programmability. The bacterial spore-based hygromorph biocomposites (HBCs) were developed and aggregated to enable them to open and close apertures and demonstrate programmable responses to changes in environmental humidity. This study spans many fields including microbiology, materials science, design, fabrication and architectural technology, working at multiple scales from single cells to 'bench-top' prototype. Exploration of biological factors at cellular and ultracellular levels enabled optimisation of growth and sporulation conditions to biologically preprogramme optimum spore hygromorphic response and yield. Material explorations revealed physical factors influencing biomechanics, preprograming shape and response complexity through fabrication and inert substrate interactions, to produce a palette of HBCs. Morphological aggregation was designed to harness and scale-up the HBC palette into programmable humidity responsive aperture openings. This culminated in pilot performance testing of a humidity-responsive ventilation panel fabricated with aggregated Bacillus HBCs as a bench-top prototype and suggests potential for this novel biotechnology to be further developed.","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad3a4d","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The urgency for energy efficient, responsive architectures has propelled smart material development to the forefront of scientific and architectural research. This paper explores biological, physical, and morphological factors influencing the programming of a novel microbial-based smart hybrid material which is responsive to changes in environmental humidity. Hygromorphs respond passively, without energy input, by expanding in high humidity and contracting in low humidity. Bacillus subtilis develops environmentally robust, hygromorphic spores which may be harnessed within a bilayer to generate a deflection response with potential for programmability. The bacterial spore-based hygromorph biocomposites (HBCs) were developed and aggregated to enable them to open and close apertures and demonstrate programmable responses to changes in environmental humidity. This study spans many fields including microbiology, materials science, design, fabrication and architectural technology, working at multiple scales from single cells to 'bench-top' prototype. Exploration of biological factors at cellular and ultracellular levels enabled optimisation of growth and sporulation conditions to biologically preprogramme optimum spore hygromorphic response and yield. Material explorations revealed physical factors influencing biomechanics, preprograming shape and response complexity through fabrication and inert substrate interactions, to produce a palette of HBCs. Morphological aggregation was designed to harness and scale-up the HBC palette into programmable humidity responsive aperture openings. This culminated in pilot performance testing of a humidity-responsive ventilation panel fabricated with aggregated Bacillus HBCs as a bench-top prototype and suggests potential for this novel biotechnology to be further developed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型微生物 hygromorphic 材料编程的生物、物理和形态因素。
对高效节能、反应灵敏的建筑的迫切需求推动智能材料的开发成为科学和建筑研究的前沿。本文探讨了影响新型微生物智能混合材料编程的生物、物理和形态因素,这种材料能对环境湿度的变化做出反应。混合微生物在没有能量输入的情况下被动做出反应,在湿度高时膨胀,在湿度低时收缩。枯草芽孢杆菌(Bacillus subtilis)可在双分子层中开发出环境稳健的湿态孢子,从而产生具有潜在可编程性的偏转响应。以细菌孢子为基础的湿形态生物复合材料(HBCs)被开发出来并聚集在一起,使它们能够打开和关闭孔隙,并展示对环境湿度变化的可编程响应。这项研究横跨微生物学、材料科学、设计、制造和建筑技术等多个领域,涉及从单细胞到 "台式 "原型的多个尺度。通过对细胞和超细胞水平的生物因素进行探索,可以优化生长和孢子繁殖条件,从而在生物上预设最佳孢子形态反应和产量。材料探索揭示了影响生物力学的物理因素,通过制造和惰性基质的相互作用,预设了形状和反应的复杂性,从而产生了一系列高生物形体。设计了形态聚合技术,以利用和扩大 HBC 组合,使其成为可编程的湿度响应开孔。最终,利用聚集的芽孢杆菌 HBC 制作的湿度响应通风板作为台式原型进行了试验性性能测试,表明这种新型生物技术具有进一步开发的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
期刊最新文献
Enhancing postural stability in musculoskeletal quadrupedal locomotion through tension feedback for CPG-based controller. One-shot manufacturable soft-robotic pump inspired by embryonic tubular heart. Role of viscoelasticity in the adhesion of mushroom-shaped pillars. A biomimetic fruit fly robot for studying the neuromechanics of legged locomotion. Encoding spatiotemporal asymmetry in artificial cilia with a ctenophore-inspired soft-robotic platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1