Crashworthiness performance of double-hat column made of anisotropic sheet metals under axial impact load

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-04-03 DOI:10.1177/14644207241244528
Ali Aziz, Ditho Pulungan, Afdhal, L. Gunawan, T. Dirgantara
{"title":"Crashworthiness performance of double-hat column made of anisotropic sheet metals under axial impact load","authors":"Ali Aziz, Ditho Pulungan, Afdhal, L. Gunawan, T. Dirgantara","doi":"10.1177/14644207241244528","DOIUrl":null,"url":null,"abstract":"This study aims to observe the crashworthiness performance of a double-hat column constructed from anisotropic sheet metals under axial impact conditions. The predicted crashworthiness parameters obtained from numerical simulations were compared with experimental data. Anisotropy was discerned through the examination of three material orientations. The effects of viscoplasticity were rigorously investigated under both quasi-static and dynamic loading conditions. Anisotropy notably exerted a pronounced influence on crucial metrics such as mean crushing force, maximum crushing force, and specific energy absorption. Furthermore, the viscoplastic behavior of the column substantially augmented the structural response, particularly under dynamic loading scenarios. Notably, the anisotropic-viscoplastic model exhibited superior accuracy compared to its isotropic counterpart, thereby underscoring its efficacy in capturing intricate material characteristics. This study underscores the critical significance of accounting for geometric imperfections to ensure precise predictions of deformation shapes and crashworthiness performance.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"83 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14644207241244528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to observe the crashworthiness performance of a double-hat column constructed from anisotropic sheet metals under axial impact conditions. The predicted crashworthiness parameters obtained from numerical simulations were compared with experimental data. Anisotropy was discerned through the examination of three material orientations. The effects of viscoplasticity were rigorously investigated under both quasi-static and dynamic loading conditions. Anisotropy notably exerted a pronounced influence on crucial metrics such as mean crushing force, maximum crushing force, and specific energy absorption. Furthermore, the viscoplastic behavior of the column substantially augmented the structural response, particularly under dynamic loading scenarios. Notably, the anisotropic-viscoplastic model exhibited superior accuracy compared to its isotropic counterpart, thereby underscoring its efficacy in capturing intricate material characteristics. This study underscores the critical significance of accounting for geometric imperfections to ensure precise predictions of deformation shapes and crashworthiness performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
各向异性金属板制成的双帽柱在轴向冲击载荷下的防撞性能
本研究旨在观察由各向异性金属板制成的双帽柱在轴向冲击条件下的防撞性能。通过数值模拟获得的预测耐撞性参数与实验数据进行了比较。各向异性是通过对三种材料取向的研究发现的。在准静态和动态加载条件下,对粘塑性的影响进行了严格研究。各向异性对平均压碎力、最大压碎力和比能量吸收等关键指标产生了明显的影响。此外,柱子的粘塑性行为大大增强了结构响应,尤其是在动态加载情况下。值得注意的是,与各向同性模型相比,各向异性-粘弹性模型表现出更高的精确度,从而凸显了其在捕捉复杂材料特性方面的功效。这项研究强调了考虑几何缺陷对确保精确预测变形形状和防撞性能的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Quinone-Based Mediator Immobilized Mesoporous Electrodes for Bioelectrocatalysis of Glucose Dehydrogenase. Annealing of pDNA to Form the Single-Nucleobase-Terminal Complex for In Vivo Gene Expression. Development of a pH-Responsive Nanoantibiotic Hydrogel System Based on PVA/Pectin and Biomass-Derived Bacterial Nanocellulose for Antibacterial Wound Dressings. Nanoparticle Metal Mass Uptake Correlates with Radiosensitizing Efficacy across 2D, 3D, and In Vivo Models. 1,2,4-Triazole-Based Excited-State Intramolecular Proton Transfer-Driven "Turn-On" Chemosensor for Selective Cyanide Detection with Test Strip Utility and Molecular Keypad Lock: An Experimental and Computational Exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1