Video Forgery Detection using an Improved BAT with Stacked Auto Encoder Model

Girish Nagaraj, Nandini Channegowda
{"title":"Video Forgery Detection using an Improved BAT with Stacked Auto Encoder Model","authors":"Girish Nagaraj, Nandini Channegowda","doi":"10.37934/araset.42.2.175187","DOIUrl":null,"url":null,"abstract":"There are various public and private places such as banks, roads, offices, and homes equipped with cameras for surveillance. The surveillance videos are consisting of a precious source of information related to critical application scopes. The main problem is to aid powerful and accessible software that changes the content present in the video for the forgery creation of a video. The forgery involves region duplication that has a common video tampering. The existing techniques are utilized to detect video tampering from the forged videos that showed complexity in the background. Thus, it is important to overcome the problem of forgery detection in the research. The Spatio-temporal averaging model is carried out for the collection of a video sequence for obtaining the background information. This can detect the moving objects effectively for forgery detection. Next, the ResNet 18 is used for extraction of the feature vectors, and the discriminative feature vectors were reduced and improved the training time and accuracy. The Single Auto Encoder (SAE) is not able to reduce the input features' dimensionality. Thus, the SAE has used 3 encoders stacked on the top for detecting the forgery. It is based on the sequence of videos. In comparison to the existing models, the proposed approach outperformed them with accuracy rates of 98.6%, sensitivity rates of 98.60%, specificity rates of 98.47%, MCC rates of 97.29%, and precision rates of 99.93%.","PeriodicalId":506443,"journal":{"name":"Journal of Advanced Research in Applied Sciences and Engineering Technology","volume":"5 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research in Applied Sciences and Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/araset.42.2.175187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There are various public and private places such as banks, roads, offices, and homes equipped with cameras for surveillance. The surveillance videos are consisting of a precious source of information related to critical application scopes. The main problem is to aid powerful and accessible software that changes the content present in the video for the forgery creation of a video. The forgery involves region duplication that has a common video tampering. The existing techniques are utilized to detect video tampering from the forged videos that showed complexity in the background. Thus, it is important to overcome the problem of forgery detection in the research. The Spatio-temporal averaging model is carried out for the collection of a video sequence for obtaining the background information. This can detect the moving objects effectively for forgery detection. Next, the ResNet 18 is used for extraction of the feature vectors, and the discriminative feature vectors were reduced and improved the training time and accuracy. The Single Auto Encoder (SAE) is not able to reduce the input features' dimensionality. Thus, the SAE has used 3 encoders stacked on the top for detecting the forgery. It is based on the sequence of videos. In comparison to the existing models, the proposed approach outperformed them with accuracy rates of 98.6%, sensitivity rates of 98.60%, specificity rates of 98.47%, MCC rates of 97.29%, and precision rates of 99.93%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用带堆叠自动编码器模型的改进 BAT 进行视频伪造检测
银行、道路、办公室和家庭等各种公共和私人场所都装有监控摄像头。监控视频是与关键应用范围相关的宝贵信息来源。目前的主要问题是如何借助功能强大且易于使用的软件来改变视频中的内容,从而伪造视频。伪造涉及区域复制,这是一种常见的视频篡改行为。现有技术可用于从伪造视频中检测视频篡改,伪造视频的背景显示出复杂性。因此,在研究中克服伪造检测问题非常重要。时空平均模型用于收集视频序列以获取背景信息。这可以有效地检测出移动物体,从而进行伪造检测。接着,使用 ResNet 18 提取特征向量,减少了辨别特征向量,提高了训练时间和准确率。单自动编码器(SAE)无法降低输入特征的维数。因此,SAE 使用了 3 个堆叠在顶部的编码器来检测伪造。它基于视频序列。与现有模型相比,拟议方法的准确率为 98.6%,灵敏度为 98.60%,特异性为 98.47%,MCC 为 97.29%,精确率为 99.93%,均优于现有模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
期刊最新文献
Optimising Layout of a Left-Turn Bypass Intersection under Mixed Traffic Flow using Simulation: A Case Study in Pulau Pinang, Malaysia Design and Fabrication of Compact MIMO Array Antenna with Tapered Feed Line for 5G Applications Analysing Flipped Classroom Themes Trends in Computer Science Education (2007–2023) Using CiteSpace The Comparison of Fuzzy Regression Approaches with and without Clustering Method in Predicting Manufacturing Income Unveiling Effective CSCL Constructs for STEM Education in Malaysia and Indonesia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1