{"title":"Throughput scaling and thermomechanical behaviour in multiplexed fused filament fabrication","authors":"","doi":"10.1016/j.cirp.2024.04.024","DOIUrl":null,"url":null,"abstract":"<div><p>Multiplexed Fused Filament Fabrication (MF3) combines a dynamic extrusion-based toolpath with a multi-extruder-single-gantry machine tool architecture to increase printing speed without sacrificing geometric capabilities or increasing hardware complexity. This work establishes a novel capability for geometrically generalizable synthesis of MF3 toolpaths and creates a new thermal model that incorporates the unique nature of material deposition. It is shown that MF3 can increase throughput by an order of magnitude or more via the atypical and nonlinear effects of part size, infill density and extruder spacing. Further, the unusual temperature history in MF3 is found to enhance the part's mechanical properties.</p></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"73 1","pages":"Pages 177-180"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0007850624000313/pdfft?md5=58db18737860d4c53fd2369a9fdeea07&pid=1-s2.0-S0007850624000313-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850624000313","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Multiplexed Fused Filament Fabrication (MF3) combines a dynamic extrusion-based toolpath with a multi-extruder-single-gantry machine tool architecture to increase printing speed without sacrificing geometric capabilities or increasing hardware complexity. This work establishes a novel capability for geometrically generalizable synthesis of MF3 toolpaths and creates a new thermal model that incorporates the unique nature of material deposition. It is shown that MF3 can increase throughput by an order of magnitude or more via the atypical and nonlinear effects of part size, infill density and extruder spacing. Further, the unusual temperature history in MF3 is found to enhance the part's mechanical properties.
期刊介绍:
CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems.
This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include:
Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.