Automated litho-fluid and facies classification in well-logs: the Rock Physics perspective

GEOPHYSICS Pub Date : 2024-04-01 DOI:10.1190/geo2023-0533.1
R. Beloborodov, James Gunning, M. Pervukhina, Juerg Hauser, M. B. Clennell, Alan Mur, Vladimir Li
{"title":"Automated litho-fluid and facies classification in well-logs: the Rock Physics perspective","authors":"R. Beloborodov, James Gunning, M. Pervukhina, Juerg Hauser, M. B. Clennell, Alan Mur, Vladimir Li","doi":"10.1190/geo2023-0533.1","DOIUrl":null,"url":null,"abstract":"While accurate litho-fluid and facies interpretation from wireline log data is critical for applications like joint facies and impedance inversion of seismic data, extracting this information manually is challenging due to the complexity and high dimensionality of the logs. Traditional clustering methods also struggle with litho-fluid type inference due to different depth trends in petrophysical rock properties due to compaction and diagenesis. We introduce a Rock Physics Machine Learning workflow that automates litho-fluid classification and property depth trend modeling to address these challenges. This workflow employs a maximum-likelihood approach, explicitly accounting for depth-related effects via Rock Physics models, to infer litho-fluid types from borehole data. It utilizes a robust Expectation-Maximization algorithm to associate each litho-fluid type with a specific Rock Physics model instance, constrained within physically reasonable bounds. The workflow directly outputs litho-fluid type proportions and type-specific Rock Physics models with associated uncertainties, providing essential prior information for seismic inversion.","PeriodicalId":509604,"journal":{"name":"GEOPHYSICS","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GEOPHYSICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/geo2023-0533.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While accurate litho-fluid and facies interpretation from wireline log data is critical for applications like joint facies and impedance inversion of seismic data, extracting this information manually is challenging due to the complexity and high dimensionality of the logs. Traditional clustering methods also struggle with litho-fluid type inference due to different depth trends in petrophysical rock properties due to compaction and diagenesis. We introduce a Rock Physics Machine Learning workflow that automates litho-fluid classification and property depth trend modeling to address these challenges. This workflow employs a maximum-likelihood approach, explicitly accounting for depth-related effects via Rock Physics models, to infer litho-fluid types from borehole data. It utilizes a robust Expectation-Maximization algorithm to associate each litho-fluid type with a specific Rock Physics model instance, constrained within physically reasonable bounds. The workflow directly outputs litho-fluid type proportions and type-specific Rock Physics models with associated uncertainties, providing essential prior information for seismic inversion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
井志中的岩流和岩相自动分类:岩石物理学视角
从有线测井数据中准确解释岩性流体和岩相对于地震数据的联合岩相和阻抗反演等应用至关重要,但由于测井的复杂性和高维性,人工提取这些信息极具挑战性。由于压实和成岩作用导致岩石物理特性的深度趋势不同,传统的聚类方法在岩石流体类型推断方面也很吃力。我们介绍了一种岩石物理机器学习工作流程,可自动进行岩石流体分类和属性深度趋势建模,以应对这些挑战。该工作流程采用最大似然法,通过岩石物理模型明确考虑与深度相关的影响,从井眼数据中推断岩石流体类型。它采用稳健的期望最大化算法,将每种岩石流体类型与特定的岩石物理模型实例相关联,并限制在物理上合理的范围内。工作流程直接输出岩石流体类型比例和特定类型的岩石物理模型以及相关的不确定性,为地震反演提供重要的先验信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust unsupervised 5D seismic data reconstruction on both regular and irregular grid Effect of fluid patch clustering on the P-wave velocity-saturation relation: a critical saturation model Strategic Geosteering Workflow with Uncertainty Quantification and Deep Learning: Initial Test on the Goliat Field Data Review on 3D electromagnetic modeling and inversion for Mineral Exploration High dynamic range land wavefield reconstruction from randomized acquisition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1