Andrew E Toader, Mitsuhiro Fukuda, Alberto L Vazquez
{"title":"Evaluation of calibrated and uncalibrated optical imaging approaches for relative cerebral oxygen metabolism measurements in awake mice","authors":"Andrew E Toader, Mitsuhiro Fukuda, Alberto L Vazquez","doi":"10.1088/1361-6579/ad3a2d","DOIUrl":null,"url":null,"abstract":"Abstract Objective. The continuous delivery of oxygen is critical to sustain brain function, and therefore, measuring brain oxygen consumption can provide vital physiological insight. In this work, we examine the impact of calibration and cerebral blood flow (CBF) measurements on the computation of the relative changes in the cerebral metabolic rate of oxygen consumption (rCMRO2) from hemoglobin-sensitive intrinsic optical imaging data. Using these data, we calculate rCMRO2, and calibrate the model using an isometabolic stimulus. Approach. We used awake head-fixed rodents to obtain hemoglobin-sensitive optical imaging data to test different calibrated and uncalibrated rCMRO2 models. Hypercapnia was used for calibration and whisker stimulation was used to test the impact of calibration. Main results. We found that typical uncalibrated models can provide reasonable estimates of rCMRO2 with differences as small as 7%–9% compared to their calibrated models. However, calibrated models showed lower variability and less dependence on baseline hemoglobin concentrations. Lastly, we found that supplying the model with measurements of CBF significantly reduced error and variability in rCMRO2 change calculations. Significance. The effect of calibration on rCMRO2 calculations remains understudied, and we systematically evaluated different rCMRO2 calculation scenarios that consider including different measurement combinations. This study provides a quantitative comparison of these scenarios to evaluate trade-offs that can be vital to the design of blood oxygenation sensitive imaging experiments for rCMRO2 calculation.","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ad3a2d","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Objective. The continuous delivery of oxygen is critical to sustain brain function, and therefore, measuring brain oxygen consumption can provide vital physiological insight. In this work, we examine the impact of calibration and cerebral blood flow (CBF) measurements on the computation of the relative changes in the cerebral metabolic rate of oxygen consumption (rCMRO2) from hemoglobin-sensitive intrinsic optical imaging data. Using these data, we calculate rCMRO2, and calibrate the model using an isometabolic stimulus. Approach. We used awake head-fixed rodents to obtain hemoglobin-sensitive optical imaging data to test different calibrated and uncalibrated rCMRO2 models. Hypercapnia was used for calibration and whisker stimulation was used to test the impact of calibration. Main results. We found that typical uncalibrated models can provide reasonable estimates of rCMRO2 with differences as small as 7%–9% compared to their calibrated models. However, calibrated models showed lower variability and less dependence on baseline hemoglobin concentrations. Lastly, we found that supplying the model with measurements of CBF significantly reduced error and variability in rCMRO2 change calculations. Significance. The effect of calibration on rCMRO2 calculations remains understudied, and we systematically evaluated different rCMRO2 calculation scenarios that consider including different measurement combinations. This study provides a quantitative comparison of these scenarios to evaluate trade-offs that can be vital to the design of blood oxygenation sensitive imaging experiments for rCMRO2 calculation.
期刊介绍:
Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation.
Papers are published on topics including:
applied physiology in illness and health
electrical bioimpedance, optical and acoustic measurement techniques
advanced methods of time series and other data analysis
biomedical and clinical engineering
in-patient and ambulatory monitoring
point-of-care technologies
novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems.
measurements in molecular, cellular and organ physiology and electrophysiology
physiological modeling and simulation
novel biomedical sensors, instruments, devices and systems
measurement standards and guidelines.