Solomon Otoo Lomotey , Jonas Rodrigues de Souza , Cristiano Max Wrasse , Hisao Takahashi , Diego Barros , Cosme Alexandre Oliveira Barros Figueiredo , José Humberto Andrade Sobral , Fábio Egito , Patrick Essien , Toyese Tunde Ayorinde , Anderson Vestena Bilibio , Nana Ama Browne Klutse
{"title":"Variability of the equatorial ionization anomaly over the South American sector: Effects of electric field and effective meridional wind","authors":"Solomon Otoo Lomotey , Jonas Rodrigues de Souza , Cristiano Max Wrasse , Hisao Takahashi , Diego Barros , Cosme Alexandre Oliveira Barros Figueiredo , José Humberto Andrade Sobral , Fábio Egito , Patrick Essien , Toyese Tunde Ayorinde , Anderson Vestena Bilibio , Nana Ama Browne Klutse","doi":"10.1016/j.jastp.2024.106240","DOIUrl":null,"url":null,"abstract":"<div><p>Vertical Total Electron Content (VTEC) Maps over the South American Continent were utilized to investigate the temporal and longitudinal climatology of Equatorial Ionization Anomaly (EIA) using more than 350 Global Navigation Satellite Systems (GNSS) receivers. At a temporal resolution of 10 min, the EIA motions, morphologies, and evolutions were mapped using VTEC keogram along magnetic meridians lines. Between 2014 and 2019, characteristics of the EIA were studied at two different South American magnetic meridians (i.e., <span><math><mrow><mn>3</mn><mo>.</mo><mn>36</mn><mo>°</mo></mrow></math></span> E and <span><math><mrow><mn>7</mn><mo>.</mo><mn>58</mn><mo>°</mo></mrow></math></span> E) separated by <span><math><mrow><mo>∼</mo><mn>555</mn></mrow></math></span> km at an altitude of 300 km. The aim of this study is to examine the EIA’s variability, monthly variations and occurrences at evenly spaced longitudinal sectors. The effects of effective meridional winds component and <span><math><mi>E × B</mi></math></span> drift velocity on the daytime asymmetry of EIA anomalies were studied using a physics-based numerical model, Sheffield University Plasmasphere-Ionosphere model at Instituto Nacional de Pesquisas Espaciais (SUPIM-INPE). We found that the EIA parameters such as strength, shape, intensity, and latitudinal positions are affected by the eastward electric field and effective meridional wind. The monthly variations in the EIA over two magnetic meridian sectors demonstrate a semiannual variation. The EIA crests were more symmetric in equinox than in solstice seasons. The asymmetries of the EIA observed during the December solstice are more intense than during the June solstice, whereas September equinox is less symmetric than March equinox seasons. Moreover, this study indicates that the vertical drift and the meridional neutral wind plays a very significant role in the development of the EIA asymmetry by transporting the plasma up the field lines. There was a notable contraction of the EIA southern hemispheric (SH) crests from the December solstice to the June solstice. Meanwhile, the EIA crest positions in the northern hemisphere (NH) expand from the December solstice to the June solstice. According to our observations, the March equinox season had the most EIA occurrences, which were then followed by the September equinox, the December and June solstices. The intensities of the EIA crests also considerably decreased with solar descending phases. Through modeling, this work provides the scientific community with new insights into the evolution/development of EIA and their latitudinal asymmetry, as well as the role of <span><math><mi>E × B</mi></math></span> drift and thermospheric neutral wind in assessing the statistical analysis of EIA variability using the largest VTEC database over the South American sector.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624000683","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Vertical Total Electron Content (VTEC) Maps over the South American Continent were utilized to investigate the temporal and longitudinal climatology of Equatorial Ionization Anomaly (EIA) using more than 350 Global Navigation Satellite Systems (GNSS) receivers. At a temporal resolution of 10 min, the EIA motions, morphologies, and evolutions were mapped using VTEC keogram along magnetic meridians lines. Between 2014 and 2019, characteristics of the EIA were studied at two different South American magnetic meridians (i.e., E and E) separated by km at an altitude of 300 km. The aim of this study is to examine the EIA’s variability, monthly variations and occurrences at evenly spaced longitudinal sectors. The effects of effective meridional winds component and drift velocity on the daytime asymmetry of EIA anomalies were studied using a physics-based numerical model, Sheffield University Plasmasphere-Ionosphere model at Instituto Nacional de Pesquisas Espaciais (SUPIM-INPE). We found that the EIA parameters such as strength, shape, intensity, and latitudinal positions are affected by the eastward electric field and effective meridional wind. The monthly variations in the EIA over two magnetic meridian sectors demonstrate a semiannual variation. The EIA crests were more symmetric in equinox than in solstice seasons. The asymmetries of the EIA observed during the December solstice are more intense than during the June solstice, whereas September equinox is less symmetric than March equinox seasons. Moreover, this study indicates that the vertical drift and the meridional neutral wind plays a very significant role in the development of the EIA asymmetry by transporting the plasma up the field lines. There was a notable contraction of the EIA southern hemispheric (SH) crests from the December solstice to the June solstice. Meanwhile, the EIA crest positions in the northern hemisphere (NH) expand from the December solstice to the June solstice. According to our observations, the March equinox season had the most EIA occurrences, which were then followed by the September equinox, the December and June solstices. The intensities of the EIA crests also considerably decreased with solar descending phases. Through modeling, this work provides the scientific community with new insights into the evolution/development of EIA and their latitudinal asymmetry, as well as the role of drift and thermospheric neutral wind in assessing the statistical analysis of EIA variability using the largest VTEC database over the South American sector.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.