{"title":"Beneath the surface: endosomal GPCR signaling","authors":"Emmanuel Flores-Espinoza , Alex R.B. Thomsen","doi":"10.1016/j.tibs.2024.03.006","DOIUrl":null,"url":null,"abstract":"<div><p>G protein-coupled receptors (GPCRs) located at the cell surface bind extracellular ligands and convey intracellular signals via activation of heterotrimeric G proteins. Traditionally, G protein signaling was viewed to occur exclusively at this subcellular region followed by rapid desensitization facilitated by β-arrestin (βarr)-mediated G protein uncoupling and receptor internalization. However, emerging evidence over the past 15 years suggests that these βarr-mediated events do not necessarily terminate receptor signaling and that some GPCRs continue to activate G proteins after having been internalized into endosomes. Here, we review the recently elucidated mechanistic basis underlying endosomal GPCR signaling and discuss physiological implications and pharmacological targeting of this newly appreciated signaling mode.</p></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 6","pages":"Pages 520-531"},"PeriodicalIF":11.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Biochemical Sciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968000424000720","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
G protein-coupled receptors (GPCRs) located at the cell surface bind extracellular ligands and convey intracellular signals via activation of heterotrimeric G proteins. Traditionally, G protein signaling was viewed to occur exclusively at this subcellular region followed by rapid desensitization facilitated by β-arrestin (βarr)-mediated G protein uncoupling and receptor internalization. However, emerging evidence over the past 15 years suggests that these βarr-mediated events do not necessarily terminate receptor signaling and that some GPCRs continue to activate G proteins after having been internalized into endosomes. Here, we review the recently elucidated mechanistic basis underlying endosomal GPCR signaling and discuss physiological implications and pharmacological targeting of this newly appreciated signaling mode.
位于细胞表面的 G 蛋白偶联受体(GPCR)与细胞外配体结合,并通过激活异三聚 G 蛋白传递细胞内信号。传统观点认为,G 蛋白信号传导只发生在这一亚细胞区域,随后在 β-阻遏素(βarr)介导的 G 蛋白解偶联和受体内化作用下迅速脱敏。然而,过去 15 年中新出现的证据表明,这些由 βarr 介导的事件并不一定会终止受体信号传导,一些 GPCR 在内化到内体后仍会继续激活 G 蛋白。在此,我们回顾了最近阐明的内泌体 GPCR 信号转导的机理基础,并讨论了这种新近受到重视的信号转导模式的生理意义和药理作用。
期刊介绍:
For over 40 years, Trends in Biochemical Sciences (TIBS) has been a leading publication keeping readers informed about recent advances in all areas of biochemistry and molecular biology. Through monthly, peer-reviewed issues, TIBS covers a wide range of topics, from traditional subjects like protein structure and function to emerging areas in signaling and metabolism. Articles are curated by the Editor and authored by top researchers in their fields, with a focus on moving beyond simple literature summaries to providing novel insights and perspectives. Each issue primarily features concise and timely Reviews and Opinions, supplemented by shorter articles including Spotlights, Forums, and Technology of the Month, as well as impactful pieces like Science & Society and Scientific Life articles.