Characterization and modeling of supercritical CO2 pulse pressures: Effects of activator mass and discharge plate thickness

Erdi Abi , Qifu Zeng , Lin Fu , Mingjing Jiang , Jie Zhang , Fayou Wu , Mingwei Liu , Yafeng Han
{"title":"Characterization and modeling of supercritical CO2 pulse pressures: Effects of activator mass and discharge plate thickness","authors":"Erdi Abi ,&nbsp;Qifu Zeng ,&nbsp;Lin Fu ,&nbsp;Mingjing Jiang ,&nbsp;Jie Zhang ,&nbsp;Fayou Wu ,&nbsp;Mingwei Liu ,&nbsp;Yafeng Han","doi":"10.1016/j.rockmb.2024.100126","DOIUrl":null,"url":null,"abstract":"<div><p>Utilizing a bespoke CO<sub>2</sub> phase transition pulse pressure experimental system, we conducted pulse pressure characterization tests across various activator masses, CO<sub>2</sub> filling pressures, and energy discharge plate thicknesses. This approach enabled us to ascertain the pulse pressure's response characteristics and variation patterns under diverse conditions. The formula for calculating the peak supercritical CO<sub>2</sub> pulse pressure was deduced by modeling the ultimate load calculation of the clamped circular plate, and then the time-course expression of the supercritical CO<sub>2</sub> phase transition pulse pressure and energy was carried out by introducing the time factor and taking into account the parameters of the activator mass and the thickness of the energy discharging plate. Our findings reveal a four-stage pressure evolution in the cracking tube during initiation: a gradual increase, a rapid spike, swift attenuation, and eventual negative pressure formation. The activator mass and discharge plate thickness critically influence the peak pressure's timing and magnitude. Specifically, increased activator mass hastens peak pressure onset, while a thicker discharge plate amplifies it. The errors between calculated and experimental values for peak supercritical CO<sub>2</sub> phase transition pressure fall within −5%–5%. Furthermore, the pressure peak and arrival time model demonstrates less than 10% error compared to experimental data, affirming its strong applicability. These insights offer theoretical guidance for controlling phase transition pressure and optimizing energy in supercritical CO<sub>2</sub> systems.</p></div>","PeriodicalId":101137,"journal":{"name":"Rock Mechanics Bulletin","volume":"3 3","pages":"Article 100126"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773230424000258/pdfft?md5=8ea9cabde5a1ae4a5efe87af30f63978&pid=1-s2.0-S2773230424000258-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rock Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773230424000258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing a bespoke CO2 phase transition pulse pressure experimental system, we conducted pulse pressure characterization tests across various activator masses, CO2 filling pressures, and energy discharge plate thicknesses. This approach enabled us to ascertain the pulse pressure's response characteristics and variation patterns under diverse conditions. The formula for calculating the peak supercritical CO2 pulse pressure was deduced by modeling the ultimate load calculation of the clamped circular plate, and then the time-course expression of the supercritical CO2 phase transition pulse pressure and energy was carried out by introducing the time factor and taking into account the parameters of the activator mass and the thickness of the energy discharging plate. Our findings reveal a four-stage pressure evolution in the cracking tube during initiation: a gradual increase, a rapid spike, swift attenuation, and eventual negative pressure formation. The activator mass and discharge plate thickness critically influence the peak pressure's timing and magnitude. Specifically, increased activator mass hastens peak pressure onset, while a thicker discharge plate amplifies it. The errors between calculated and experimental values for peak supercritical CO2 phase transition pressure fall within −5%–5%. Furthermore, the pressure peak and arrival time model demonstrates less than 10% error compared to experimental data, affirming its strong applicability. These insights offer theoretical guidance for controlling phase transition pressure and optimizing energy in supercritical CO2 systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超临界二氧化碳相变脉冲压力特性的实验和计算建模
利用定制的二氧化碳相变脉冲压力实验系统,我们对各种活化剂质量、二氧化碳填充压力和能量释放板厚度进行了脉冲压力特性测试。这种方法使我们能够确定脉冲压力在不同条件下的响应特性和变化规律。通过对夹紧圆板的极限载荷计算建模,推导出了超临界二氧化碳脉冲压力峰值的计算公式,然后通过引入时间因子并考虑活化剂质量和能量释放板厚度的参数,得出了超临界二氧化碳相变脉冲压力和能量的时程表达式。我们的研究结果表明,在启动过程中,裂化管内的压力演变分为四个阶段:逐渐增加、快速飙升、迅速衰减和最终形成负压。活化剂质量和放电板厚度对压力峰值出现的时间和大小有着至关重要的影响。具体来说,活化剂质量的增加会加速峰值压力的出现,而较厚的放电板则会放大峰值压力。超临界二氧化碳相变压力峰值的计算值和实验值之间的误差在 -5%-5% 之间。此外,压力峰值和到达时间模型与实验数据相比误差小于 10%,这充分证明了其强大的适用性。这些见解为在超临界二氧化碳系统中控制相变压力和优化能量提供了理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
期刊最新文献
Data-driven machine learning approaches for simultaneous prediction of peak particle velocity and frequency induced by rock blasting in mining Manually directional splitting of in-situ intact igneous rocks into large sheets Finite domain solution of a hydraulic fracture in a permeable rock Dynamic evolution of reservoir permeability and deformation in geothermal battery energy storage using abandoned mines Modeling of particle migration in piping based on an improved discrete element method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1