Monitoring Based on InSAR for the Xinmo Village Landslide in Western Sichuan, China

Zezhong Zheng, Shuang Yu, Chuhang Xie, Jiali Yang, Mingcang Zhu, He Yong
{"title":"Monitoring Based on InSAR for the Xinmo Village Landslide in Western Sichuan, China","authors":"Zezhong Zheng, Shuang Yu, Chuhang Xie, Jiali Yang, Mingcang Zhu, He Yong","doi":"10.14358/pers.23-00072r2","DOIUrl":null,"url":null,"abstract":"A devastating landslide incident occurred on 24 June 2017, causing huge losses for Xinmo Village in western Sichuan. In this paper, we used two interferometric synthetic aperture radar (InSAR) methods, permanent scatterer (PS)-InSAR and small baseline subset (SBAS)- InSAR, to analyze\n deformation signals in the area in the 2 years leading up to the landslide event using Sentinel-1A ascending data. Our experimental findings from PS-InSAR and SBAS-InSAR revealed that the deformation rates in the study region ranged between –50 to 20 mm/year and –30 to 10 mm/year,\n respectively. Furthermore, the deformation rates of the same points, as determined by these methods, exhibited a significant increase prior to the event. We also investigated the causal relationship between rainfall and landslide events, demonstrating that deformation rates correlate with\n changes in rainfall, albeit with a time lag. Therefore, using time-series InSAR for landslide monitoring in Xinmo Village is a viable approach.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"110 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.23-00072r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A devastating landslide incident occurred on 24 June 2017, causing huge losses for Xinmo Village in western Sichuan. In this paper, we used two interferometric synthetic aperture radar (InSAR) methods, permanent scatterer (PS)-InSAR and small baseline subset (SBAS)- InSAR, to analyze deformation signals in the area in the 2 years leading up to the landslide event using Sentinel-1A ascending data. Our experimental findings from PS-InSAR and SBAS-InSAR revealed that the deformation rates in the study region ranged between –50 to 20 mm/year and –30 to 10 mm/year, respectively. Furthermore, the deformation rates of the same points, as determined by these methods, exhibited a significant increase prior to the event. We also investigated the causal relationship between rainfall and landslide events, demonstrating that deformation rates correlate with changes in rainfall, albeit with a time lag. Therefore, using time-series InSAR for landslide monitoring in Xinmo Village is a viable approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 InSAR 对中国四川西部新磨村滑坡的监测
2017 年 6 月 24 日,四川西部新磨村发生破坏性山体滑坡事件,造成巨大损失。在本文中,我们使用两种干涉合成孔径雷达(InSAR)方法,即永久散射体(PS)-InSAR 和小基线子集(SBAS)-InSAR,利用 Sentinel-1A 升空数据分析了滑坡事件发生前两年该地区的形变信号。PS-InSAR 和 SBAS-InSAR 的实验结果表明,研究区域的变形率分别为 -50 至 20 毫米/年和 -30 至 10 毫米/年。此外,根据这些方法测定的相同点的形变率在事件发生前有显著增加。我们还研究了降雨量与滑坡事件之间的因果关系,结果表明,变形率与降雨量的变化相关,尽管存在时滞。因此,使用时间序列 InSAR 监测新磨村滑坡是一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ReLAP-Net: Residual Learning and Attention Based Parallel Network for Hyperspectral and Multispectral Image Fusion Book Review ‐ Top 20 Essential Skills for ArcGIS Pro A Surface Water Extraction Method Integrating Spectral and Temporal Characteristics Assessing the Utility of Uncrewed Aerial System Photogrammetrically Derived Point Clouds for Land Cover Classification in the Alaska North Slope GIS Tips & Tricks ‐ USGS Adds 100K Topo Scale to OnDemand Map Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1