The atypical IκB family member Bcl3 determines differentiation and fate of intestinal RORγt+ regulatory T-cell subsets

IF 7.9 2区 医学 Q1 IMMUNOLOGY Mucosal Immunology Pub Date : 2024-08-01 DOI:10.1016/j.mucimm.2024.04.002
{"title":"The atypical IκB family member Bcl3 determines differentiation and fate of intestinal RORγt+ regulatory T-cell subsets","authors":"","doi":"10.1016/j.mucimm.2024.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>Peripherally-induced regulatory T cells (pTregs) expressing the retinoic acid receptor-related orphan-receptor gamma t (RORγt) are indispensable for intestinal immune homeostasis. Nuclear factor kappa family members regulate the differentiation of thymic Tregs and promote their survival in the periphery. However, the Treg intrinsic molecular mechanisms controlling the size of the pTregs in the intestine and associated lymphoid organs remain unclear. Here, we provide direct evidence that B-cell lymphoma 3 (Bcl3) limits the development of pTregs in a T cell-intrinsic manner. Moreover, the absence of Bcl3 allowed for the formation of an unusual intestinal Treg population co-expressing the transcription factors Helios and RORγt. The expanded RORγt<sup>+</sup> Treg populations in the absence of Bcl3 displayed an activated phenotype and secreted high levels of the anti-inflammatory cytokines interleukin (IL)-10 and transforming growth factor beta. They were fully capable of suppressing effector T cells in a transfer colitis model despite an intrinsic bias to trans-differentiate toward T helper 17-like cells. Finally, we provide a Bcl3-dependent gene signature in pTregs including altered responsiveness to the cytokines IL-2, IL-6, and tumor necrosis factor alpha. Our results demonstrate that Bcl3 acts as a molecular switch to limit the expansion of different intestinal Treg subsets and may thus serve as a novel therapeutic target for inflammatory bowel disease by restoring intestinal immune tolerance.</p></div>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":"17 4","pages":"Pages 673-691"},"PeriodicalIF":7.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1933021924000394/pdfft?md5=393453ac16b69c21623f6d461d94b867&pid=1-s2.0-S1933021924000394-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mucosal Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1933021924000394","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Peripherally-induced regulatory T cells (pTregs) expressing the retinoic acid receptor-related orphan-receptor gamma t (RORγt) are indispensable for intestinal immune homeostasis. Nuclear factor kappa family members regulate the differentiation of thymic Tregs and promote their survival in the periphery. However, the Treg intrinsic molecular mechanisms controlling the size of the pTregs in the intestine and associated lymphoid organs remain unclear. Here, we provide direct evidence that B-cell lymphoma 3 (Bcl3) limits the development of pTregs in a T cell-intrinsic manner. Moreover, the absence of Bcl3 allowed for the formation of an unusual intestinal Treg population co-expressing the transcription factors Helios and RORγt. The expanded RORγt+ Treg populations in the absence of Bcl3 displayed an activated phenotype and secreted high levels of the anti-inflammatory cytokines interleukin (IL)-10 and transforming growth factor beta. They were fully capable of suppressing effector T cells in a transfer colitis model despite an intrinsic bias to trans-differentiate toward T helper 17-like cells. Finally, we provide a Bcl3-dependent gene signature in pTregs including altered responsiveness to the cytokines IL-2, IL-6, and tumor necrosis factor alpha. Our results demonstrate that Bcl3 acts as a molecular switch to limit the expansion of different intestinal Treg subsets and may thus serve as a novel therapeutic target for inflammatory bowel disease by restoring intestinal immune tolerance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非典型 IκB 家族成员 Bcl3 决定着肠道 RORγt+ 调节性 T 细胞亚群的分化和命运。
表达视黄酸受体相关孤儿受体γt(RORγt)的外周诱导调节性T细胞(pTregs)是肠道免疫稳态所不可或缺的。核因子 kappa 家族成员调控胸腺 Treg 的分化,并促进其在外周的存活。然而,控制肠道及相关淋巴器官中 pTregs 大小的 Treg 内在分子机制仍不清楚。在这里,我们提供了 B 细胞淋巴瘤 3(Bcl3)以 T 细胞内在方式限制 pTregs 发育的直接证据。此外,Bcl3 的缺失允许形成一种共同表达转录因子 Helios 和 RORγt 的不寻常的肠 Treg 群体。在缺乏 Bcl3 的情况下,扩大的 RORγt+ Treg 群体显示出活化的表型,并分泌高水平的抗炎细胞因子白细胞介素(IL)-10 和转化生长因子 beta。它们完全能够在转移性结肠炎模型中抑制效应 T 细胞,尽管它们有向 T 辅助细胞 17 样细胞转分化的内在倾向。最后,我们提供了 pTregs 中依赖于 Bcl3 的基因特征,包括对细胞因子 IL-2、IL-6 和肿瘤坏死因子 alpha 的反应性改变。我们的研究结果表明,Bcl3 是限制不同肠道 Treg 亚群扩增的分子开关,因此可以通过恢复肠道免疫耐受,作为炎症性肠病的新型治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mucosal Immunology
Mucosal Immunology 医学-免疫学
CiteScore
16.60
自引率
3.80%
发文量
100
审稿时长
12 days
期刊介绍: Mucosal Immunology, the official publication of the Society of Mucosal Immunology (SMI), serves as a forum for both basic and clinical scientists to discuss immunity and inflammation involving mucosal tissues. It covers gastrointestinal, pulmonary, nasopharyngeal, oral, ocular, and genitourinary immunology through original research articles, scholarly reviews, commentaries, editorials, and letters. The journal gives equal consideration to basic, translational, and clinical studies and also serves as a primary communication channel for the SMI governing board and its members, featuring society news, meeting announcements, policy discussions, and job/training opportunities advertisements.
期刊最新文献
Activation of α2B/2C adrenergic receptor ameliorates ocular surface inflammation through enhancing regulatory T cell function. Pro-inflammatory NK-like T cells are expanded in the blood and inflamed intestine in Crohn's disease. Airway macrophage glycolysis controls lung homeostasis and responses to aeroallergen. RelB and C/EBPα critically regulate the development of Peyer's patch mononuclear phagocytes. TRIM29 controls enteric RNA virus-induced intestinal inflammation by targeting NLRP6 and NLRP9b signaling pathways.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1