9 Pilosebaceous physiology in relation to hirsutism and acne

Robert L. Rosenfield
{"title":"9 Pilosebaceous physiology in relation to hirsutism and acne","authors":"Robert L. Rosenfield","doi":"10.1016/S0300-595X(86)80029-9","DOIUrl":null,"url":null,"abstract":"<div><p>PSAs, with few exceptions, consist of a piliary and a sebaceous component. In androgen-sensitive areas, each has the capacity to develop into either a terminal hair follicle or a sebaceous follicle depending upon its location. Without androgen, there is no development of the sexual hair follicle or sebaceous gland. Androgens appear to promote sexual hair growth by recruiting a population of PSAs that have preset genetic sensitivity to initiate the production of terminal hairs. The site of action of androgens within the PSA is unclear. There are indications that androgens may act at more than one site in a system that requires two-way reciprocal interaction between dermal and epithelial cells for the generation of hair growth. Growth hormone appears to exert an important synergism with androgen in affecting the PSA, seemingly through the mediation of insulin-like growth factors.</p><p>Hirsutism is due to an increased density of growing terminal hairs. The majority of cases of moderately severe hirsutism in women are due to hyperandrogenaemia, as are half the cases of mild hirsutism and about one-quarter of the cases of mild acne vulgaris. We advocate reserving the term idiopathic hirsutism or idiopathic acne for those patients in whom excessive growth of terminal hair or acne is not explained by androgen excess. We believe that highly variable sensitivity to androgen within the population explains both idiopathic hirsutism and cryptic hyperandrogenaemia; that is, these disorders lie at opposite ends of the normal spectrum of sensitivity to androgen. The biological basis for the variations in responsiveness of PSAs to androgens is unknown. The regression of hirsutism induced by antiandrogen treatment is characterized by the growth of hairs that are more vellus in character, i.e. smaller and less medullated.</p></div>","PeriodicalId":10454,"journal":{"name":"Clinics in Endocrinology and Metabolism","volume":"15 2","pages":"Pages 341-362"},"PeriodicalIF":0.0000,"publicationDate":"1986-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0300-595X(86)80029-9","citationCount":"78","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinics in Endocrinology and Metabolism","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300595X86800299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

Abstract

PSAs, with few exceptions, consist of a piliary and a sebaceous component. In androgen-sensitive areas, each has the capacity to develop into either a terminal hair follicle or a sebaceous follicle depending upon its location. Without androgen, there is no development of the sexual hair follicle or sebaceous gland. Androgens appear to promote sexual hair growth by recruiting a population of PSAs that have preset genetic sensitivity to initiate the production of terminal hairs. The site of action of androgens within the PSA is unclear. There are indications that androgens may act at more than one site in a system that requires two-way reciprocal interaction between dermal and epithelial cells for the generation of hair growth. Growth hormone appears to exert an important synergism with androgen in affecting the PSA, seemingly through the mediation of insulin-like growth factors.

Hirsutism is due to an increased density of growing terminal hairs. The majority of cases of moderately severe hirsutism in women are due to hyperandrogenaemia, as are half the cases of mild hirsutism and about one-quarter of the cases of mild acne vulgaris. We advocate reserving the term idiopathic hirsutism or idiopathic acne for those patients in whom excessive growth of terminal hair or acne is not explained by androgen excess. We believe that highly variable sensitivity to androgen within the population explains both idiopathic hirsutism and cryptic hyperandrogenaemia; that is, these disorders lie at opposite ends of the normal spectrum of sensitivity to androgen. The biological basis for the variations in responsiveness of PSAs to androgens is unknown. The regression of hirsutism induced by antiandrogen treatment is characterized by the growth of hairs that are more vellus in character, i.e. smaller and less medullated.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与多毛症和痤疮有关的毛囊皮脂腺生理学
除少数例外,psa由毛状和皮脂腺组成。在雄激素敏感的区域,每一个都有能力发展成终端毛囊或皮脂囊,这取决于它的位置。没有雄激素,就不会有性毛囊或皮脂腺的发育。雄激素似乎通过招募具有预先设定的遗传敏感性的psa群体来启动终末毛的产生来促进性毛的生长。雄激素在PSA中的作用部位尚不清楚。有迹象表明,雄激素可能作用于一个系统中的多个位点,该系统需要真皮和上皮细胞之间的双向相互作用才能产生毛发生长。生长激素似乎与雄激素在影响PSA方面发挥重要的协同作用,似乎是通过胰岛素样生长因子的介导。多毛症是由于生长的终末毛的密度增加。大多数中重度多毛症的女性病例是由于高雄激素血症,一半的轻度多毛症病例和大约四分之一的轻度寻常性痤疮病例也是如此。我们主张保留术语特发性多毛症或特发性痤疮的患者,其中过度生长的终末毛或痤疮不是由雄激素过量的解释。我们认为,人群中对雄激素的高度可变敏感性解释了特发性多毛症和隐蔽性高雄激素血症;也就是说,这些疾病处于对雄激素敏感的正常光谱的两端。psa对雄激素反应性变化的生物学基础尚不清楚。抗雄激素治疗引起的多毛症消退的特点是毛发的生长更柔软,即更小,更少有髓质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Growth hormone neurosecretory dysfunction. Long-term complications of diabetes. Contributors to this issue Foreword The pathology of diabetic neuropathy and the effects of aldose reductase inhibitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1