{"title":"Diversity and growth patterns of woody species in the Mediterranean Coastal range of Chile: A case study in Altos de Cantillana","authors":"Stephanie Gibson-Carpintero, Anahí Ocampo‐Melgar, Alejandro Venegas González","doi":"10.33494/nzjfs542024x318x","DOIUrl":null,"url":null,"abstract":"Background: The Altos de Cantillana mountain range (ACMR) in central Chile is composed of different vegetation communities, and is currently a priority site for conservation, due to its high endemism, high anthropogenic pressure and vulnerability to climate change. Research on biodiversity and carbon stocks in ACMR is essential to comprehend the resilience of these forests and to define conservation strategies. This study examines the spatial variability of biodiversity and tree biomass patterns along the entire altitudinal gradient of the ACMR.\nMethods: Six tree species communities were studied in Altos de Cantillana Nature Sanctuary, along an altitudinal gradient ranging from 415 to 2010 m. Woody species regeneration and inventory plots, as well as dendrochronological sampling in ~150 trees were carried out. Diversity patterns were analyzed using the Jaccard index and alpha index. Growth patterns of dominant trees species were analyzed by ring-width and trunk biomass chronologies, focusing on the recent megadrought period since 2010.\nResults: The forest inventory revealed a notable decline in alfa diversity patterns with increasing elevation. The moist sclerophyllous forest exhibited the highest diversity. However, we did not find a pattern between elevation and diversity (and abundance) at the seed regeneration inventory level. Additionally, we identified three clusters of woody species similarity: (i) sclerophyllous, shrubs and hygrophilous forest (<1,000 m.a.s.l.); (ii) high-elevation sclerophyllous forest (>1,500 m.a.s.l); and (iii) deciduous forests (~ 2,000 m.a.s.l). Furthermore, declining growth rates were observed in all communities studied beginning in the 1980s, with even a stronger reduction in radial growth (35% on average) and biomass accumulation (56% on average) when comparing the megadrought with six decades earlier.\nConclusions: We concluded that there is a negative correlation between woody species diversity and elevation. However, there are no altitudinal patterns in seedling regeneration diversity and abundance, which puts the natural succession in ACMR at risk. Additionally, we have determined that the accumulation of trunk biomass in dominant woody species has been significantly impacted by the recent megadrought period. This has affected the sink capacity of forest communities in ACMR. Therefore, our findings can significantly contribute to more efficient and timely decision-making processes regarding the conservation and restoration of this globally unique ecosystem.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"150 ","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.33494/nzjfs542024x318x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The Altos de Cantillana mountain range (ACMR) in central Chile is composed of different vegetation communities, and is currently a priority site for conservation, due to its high endemism, high anthropogenic pressure and vulnerability to climate change. Research on biodiversity and carbon stocks in ACMR is essential to comprehend the resilience of these forests and to define conservation strategies. This study examines the spatial variability of biodiversity and tree biomass patterns along the entire altitudinal gradient of the ACMR.
Methods: Six tree species communities were studied in Altos de Cantillana Nature Sanctuary, along an altitudinal gradient ranging from 415 to 2010 m. Woody species regeneration and inventory plots, as well as dendrochronological sampling in ~150 trees were carried out. Diversity patterns were analyzed using the Jaccard index and alpha index. Growth patterns of dominant trees species were analyzed by ring-width and trunk biomass chronologies, focusing on the recent megadrought period since 2010.
Results: The forest inventory revealed a notable decline in alfa diversity patterns with increasing elevation. The moist sclerophyllous forest exhibited the highest diversity. However, we did not find a pattern between elevation and diversity (and abundance) at the seed regeneration inventory level. Additionally, we identified three clusters of woody species similarity: (i) sclerophyllous, shrubs and hygrophilous forest (<1,000 m.a.s.l.); (ii) high-elevation sclerophyllous forest (>1,500 m.a.s.l); and (iii) deciduous forests (~ 2,000 m.a.s.l). Furthermore, declining growth rates were observed in all communities studied beginning in the 1980s, with even a stronger reduction in radial growth (35% on average) and biomass accumulation (56% on average) when comparing the megadrought with six decades earlier.
Conclusions: We concluded that there is a negative correlation between woody species diversity and elevation. However, there are no altitudinal patterns in seedling regeneration diversity and abundance, which puts the natural succession in ACMR at risk. Additionally, we have determined that the accumulation of trunk biomass in dominant woody species has been significantly impacted by the recent megadrought period. This has affected the sink capacity of forest communities in ACMR. Therefore, our findings can significantly contribute to more efficient and timely decision-making processes regarding the conservation and restoration of this globally unique ecosystem.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.