A Comparative Study of Newtonian and Non-Newtonian Nanofluids with Variable Thermal Conductivity Over a 3-D Stretching Surface

IF 2.7 Q3 NANOSCIENCE & NANOTECHNOLOGY Journal of Nanofluids Pub Date : 2024-04-01 DOI:10.1166/jon.2024.2141
C. Manoj Kumar, A. Jasmine Benazir
{"title":"A Comparative Study of Newtonian and Non-Newtonian Nanofluids with Variable Thermal Conductivity Over a 3-D Stretching Surface","authors":"C. Manoj Kumar, A. Jasmine Benazir","doi":"10.1166/jon.2024.2141","DOIUrl":null,"url":null,"abstract":"This study presents a comprehensive numerical and statistical analysis of the flow, heat/mass transfer management of Newtonian and non-Newtonian nanofluid over a bidirectional Darcy-Forchheimer stretching sheet. The external effects of MHD, Joule heating, thermal radiation, heat generation/absorption,\n Brownian motion, thermal diffusion and chemical reaction are taken into account. It is presumed that the thermal conductivity of fluid varies linearly with temperature. The non-linear coupled P.D.Es are converted into nonlinear coupled O.D.Es using similarity transformation. These equations\n are solved using MATLAB by implementing four-stage Lobatto IIIa formula and the outcomes of numerous flow parameters are presented graphically. In addition to numerical investigations, a comprehensive statistical analysis is performed using R-software to evaluate the sensitivity of key input\n parameters towards variable thermal conductivity. The values of local wall friction, local wall heat flux, and wall mass flux for various parameters are tabulated. The study reveals that the heat transmission is significant for dilatant fluids (156.8%) when compared to the pseudoplastic fluids\n (113.8%). Enriching the values of the Brownian motion parameter suppresses the molecular diffusion while a contrary nature is observed for the thermal diffusion parameter. Further, the mass transfer coefficient shows a very strong negative correlation with variable thermal conductivity parameter\n for Shear thinning fluids, whereas for Newtonian and Shear thickening fluids it shows a very strong positive correlation.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2024.2141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a comprehensive numerical and statistical analysis of the flow, heat/mass transfer management of Newtonian and non-Newtonian nanofluid over a bidirectional Darcy-Forchheimer stretching sheet. The external effects of MHD, Joule heating, thermal radiation, heat generation/absorption, Brownian motion, thermal diffusion and chemical reaction are taken into account. It is presumed that the thermal conductivity of fluid varies linearly with temperature. The non-linear coupled P.D.Es are converted into nonlinear coupled O.D.Es using similarity transformation. These equations are solved using MATLAB by implementing four-stage Lobatto IIIa formula and the outcomes of numerous flow parameters are presented graphically. In addition to numerical investigations, a comprehensive statistical analysis is performed using R-software to evaluate the sensitivity of key input parameters towards variable thermal conductivity. The values of local wall friction, local wall heat flux, and wall mass flux for various parameters are tabulated. The study reveals that the heat transmission is significant for dilatant fluids (156.8%) when compared to the pseudoplastic fluids (113.8%). Enriching the values of the Brownian motion parameter suppresses the molecular diffusion while a contrary nature is observed for the thermal diffusion parameter. Further, the mass transfer coefficient shows a very strong negative correlation with variable thermal conductivity parameter for Shear thinning fluids, whereas for Newtonian and Shear thickening fluids it shows a very strong positive correlation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有可变导热性的牛顿和非牛顿纳米流体在三维拉伸表面上的比较研究
本研究对双向达西-福克海默拉伸片上牛顿和非牛顿纳米流体的流动、传热/传质管理进行了全面的数值和统计分析。分析考虑了多流体力学、焦耳热、热辐射、热产生/吸收、布朗运动、热扩散和化学反应等外部效应。假设流体的热导率随温度线性变化。利用相似性变换将非线性耦合 P.D.Es 转换为非线性耦合 O.D.E。这些方程使用 MATLAB 通过四级 Lobatto IIIa 公式进行求解,并以图形方式显示了众多流动参数的结果。除数值研究外,还使用 R 软件进行了综合统计分析,以评估关键输入参数对可变导热系数的敏感性。表中列出了各种参数的局部壁面摩擦力、局部壁面热通量和壁面质量通量值。研究结果表明,与假塑性流体(113.8%)相比,膨胀性流体(156.8%)的热传递效果显著。丰富布朗运动参数值可抑制分子扩散,而热扩散参数则与之相反。此外,对于剪切稀化流体,传质系数与可变热导率参数呈极强的负相关,而对于牛顿流体和剪切增稠流体,则呈极强的正相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanofluids
Journal of Nanofluids NANOSCIENCE & NANOTECHNOLOGY-
自引率
14.60%
发文量
89
期刊介绍: Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.
期刊最新文献
Heat Generation/Absorption in MHD Double Diffusive Mixed Convection of Different Nanofluids in a Trapezoidal Enclosure Numerical Investigation of Hybrid Nanofluid Natural Convection and Entropy Generation in a Corrugated Enclosure with an Inner Conducting Block Magnetohydrodynamic Free Convective Flow in a Vertical Microchannel with Heat Sink Unsteady Natural Convection of Dusty Hybrid Nanofluid Flow Between a Wavy and Circular Cylinder with Heat Generation Synergistic Heat Transfer in Enclosures: A Hybrid Nanofluids Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1