Sergey V. Petryakov , Maciej M. Kmiec , Conner S. Ubert , Victor B. Kassey , Philip E. Schaner , Periannan Kuppusamy
{"title":"Surface dielectric resonator for in vivo EPR measurements","authors":"Sergey V. Petryakov , Maciej M. Kmiec , Conner S. Ubert , Victor B. Kassey , Philip E. Schaner , Periannan Kuppusamy","doi":"10.1016/j.jmr.2024.107690","DOIUrl":null,"url":null,"abstract":"<div><p>This research report describes a novel surface dielectric resonator (SDR) with a flexible connector for <em>in vivo</em> electron paramagnetic resonance (EPR) spectroscopy. Contrary to the conventional cavity or surface loop-gap resonators, the newly developed SDR is constructed from a ceramic dielectric material, and it is tuned to operate at the L-band frequency band (1.15 GHz) in continuous-wave mode. The SDR is designed to be critically coupled and capable of working with both very lossy samples, such as biological tissues, and non-lossy materials. The SDR was characterized using electromagnetic field simulations, assessed for sensitivity with a B<sub>1</sub> field-perturbation method, and validated with tissue phantoms using EPR measurements. The results showed remarkably higher sensitivity in lossy tissue phantoms than the previously reported multisegment surface-loop resonators. The new SDR can provide potential new insights for advancements in the application of <em>in vivo</em> EPR spectroscopy for biological measurements, including clinical oximetry.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780724000740","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This research report describes a novel surface dielectric resonator (SDR) with a flexible connector for in vivo electron paramagnetic resonance (EPR) spectroscopy. Contrary to the conventional cavity or surface loop-gap resonators, the newly developed SDR is constructed from a ceramic dielectric material, and it is tuned to operate at the L-band frequency band (1.15 GHz) in continuous-wave mode. The SDR is designed to be critically coupled and capable of working with both very lossy samples, such as biological tissues, and non-lossy materials. The SDR was characterized using electromagnetic field simulations, assessed for sensitivity with a B1 field-perturbation method, and validated with tissue phantoms using EPR measurements. The results showed remarkably higher sensitivity in lossy tissue phantoms than the previously reported multisegment surface-loop resonators. The new SDR can provide potential new insights for advancements in the application of in vivo EPR spectroscopy for biological measurements, including clinical oximetry.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.