{"title":"Bell Instability–mediated Diffusive Shock Acceleration at Supernova Blast Wave Shock Propagating in the Interstellar Medium","authors":"Tsuyoshi Inoue, A. Marcowith, G. Giacinti","doi":"10.3847/1538-4357/ad3104","DOIUrl":null,"url":null,"abstract":"\n Supernova blast wave shock is a very important site of cosmic-ray acceleration. However, the detailed physical process of acceleration, in particular, nonlinear interplay between cosmic-ray streaming and magnetic field amplification, has not been studied under a realistic environment. In this paper, using a unique and novel numerical method, we study cosmic-ray acceleration at supernova blast wave shock propagating in the interstellar medium with well-resolved magnetic field amplification by nonresonant hybrid instability (or Bell instability). We find that the magnetic field is mildly amplified under typical interstellar medium conditions that leads to maximum cosmic-ray energy ≃30 TeV for supernova remnants with age ≃1000 yr consistent with gamma-ray observations. The strength of the amplified magnetic field does not reach the so-called saturation level because the cosmic-ray electric current toward the shock upstream has a finite spatial extent, by which Bell instability cannot experience many e-folding times.","PeriodicalId":504209,"journal":{"name":"The Astrophysical Journal","volume":"129 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad3104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Supernova blast wave shock is a very important site of cosmic-ray acceleration. However, the detailed physical process of acceleration, in particular, nonlinear interplay between cosmic-ray streaming and magnetic field amplification, has not been studied under a realistic environment. In this paper, using a unique and novel numerical method, we study cosmic-ray acceleration at supernova blast wave shock propagating in the interstellar medium with well-resolved magnetic field amplification by nonresonant hybrid instability (or Bell instability). We find that the magnetic field is mildly amplified under typical interstellar medium conditions that leads to maximum cosmic-ray energy ≃30 TeV for supernova remnants with age ≃1000 yr consistent with gamma-ray observations. The strength of the amplified magnetic field does not reach the so-called saturation level because the cosmic-ray electric current toward the shock upstream has a finite spatial extent, by which Bell instability cannot experience many e-folding times.