Random bridge generator as a platform for developing computer vision-based structural inspection algorithms

Haojia Cheng , Wenhao Chai , Jiabao Hu , Wenhao Ruan , Mingyu Shi , Hyunjun Kim , Yifan Cao , Yasutaka Narazaki
{"title":"Random bridge generator as a platform for developing computer vision-based structural inspection algorithms","authors":"Haojia Cheng ,&nbsp;Wenhao Chai ,&nbsp;Jiabao Hu ,&nbsp;Wenhao Ruan ,&nbsp;Mingyu Shi ,&nbsp;Hyunjun Kim ,&nbsp;Yifan Cao ,&nbsp;Yasutaka Narazaki","doi":"10.1016/j.iintel.2024.100098","DOIUrl":null,"url":null,"abstract":"<div><p>Recent advances in computer vision algorithms have transformed the bridge visual inspection process. Those algorithms typically require large amounts of annotated data, which is lacking for generic bridge inspection scenarios. To address this challenge efficiently, this research designs, develops, and demonstrates a platform that can provide synthetic datasets and testing environments, termed Random Bridge Generator (RBG). The RBG produces photo-realistic 3D synthetic environments of six types of bridges randomly, automatically, and procedurally. Following relevant standards and design practice, the RBG creates random cross-sectional shapes, converts those shapes into bridge components, and assembles the components into bridges. The effectiveness of the RBG is demonstrated by producing a dataset (RBG Dataset) containing 10,753 images with pixel-wise annotations, rendered in 250 different synthetic environments. Significant diversity of the photo-realistic bridge inspection environments has been achieved, while all structural components strictly conform to the definitions derived from structural engineering documents. The use of the RBG dataset has been demonstrated by training a deep semantic segmentation algorithm with 101 convolutional layers, showing successful segmentation results for both major and minor structural components. The developed RBG is expected to enhance the level of automation in bridge visual inspection process. The Python code for RBG is made public at: <span>https://github.com/chenghaojia2323/Random-Bridge-Generator.git</span><svg><path></path></svg>.</p></div>","PeriodicalId":100791,"journal":{"name":"Journal of Infrastructure Intelligence and Resilience","volume":"3 2","pages":"Article 100098"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772991524000173/pdfft?md5=58700757be314ae33cab0ac0f3e2707a&pid=1-s2.0-S2772991524000173-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrastructure Intelligence and Resilience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772991524000173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in computer vision algorithms have transformed the bridge visual inspection process. Those algorithms typically require large amounts of annotated data, which is lacking for generic bridge inspection scenarios. To address this challenge efficiently, this research designs, develops, and demonstrates a platform that can provide synthetic datasets and testing environments, termed Random Bridge Generator (RBG). The RBG produces photo-realistic 3D synthetic environments of six types of bridges randomly, automatically, and procedurally. Following relevant standards and design practice, the RBG creates random cross-sectional shapes, converts those shapes into bridge components, and assembles the components into bridges. The effectiveness of the RBG is demonstrated by producing a dataset (RBG Dataset) containing 10,753 images with pixel-wise annotations, rendered in 250 different synthetic environments. Significant diversity of the photo-realistic bridge inspection environments has been achieved, while all structural components strictly conform to the definitions derived from structural engineering documents. The use of the RBG dataset has been demonstrated by training a deep semantic segmentation algorithm with 101 convolutional layers, showing successful segmentation results for both major and minor structural components. The developed RBG is expected to enhance the level of automation in bridge visual inspection process. The Python code for RBG is made public at: https://github.com/chenghaojia2323/Random-Bridge-Generator.git.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将随机桥梁生成器作为开发基于计算机视觉的结构检测算法的平台
计算机视觉算法的最新进展改变了桥梁视觉检测流程。这些算法通常需要大量的注释数据,而一般的桥梁检测场景却缺乏这些数据。为有效解决这一难题,本研究设计、开发并演示了一个可提供合成数据集和测试环境的平台,即随机桥梁生成器(RBG)。RBG 可随机、自动和程序化地生成六种类型桥梁的逼真三维合成环境。RBG 遵循相关标准和设计实践,随机创建横截面形状,将这些形状转换为桥梁构件,并将构件组装成桥梁。通过生成一个数据集(RBG 数据集),展示了 RBG 的有效性,该数据集包含 10,753 幅图像,并在 250 个不同的合成环境中进行了像素标注。照片逼真的桥梁检测环境实现了显著的多样性,同时所有结构部件都严格符合结构工程文件中的定义。通过训练具有 101 个卷积层的深度语义分割算法,证明了 RBG 数据集的用途,并显示了主要和次要结构组件的成功分割结果。所开发的 RBG 可望提高桥梁视觉检测过程的自动化水平。RBG 的 Python 代码已在以下网站公开:https://github.com/chenghaojia2323/Random-Bridge-Generator.git。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
期刊最新文献
Review on optimization strategies of probabilistic diagnostic imaging methods An integrated management system (IMS) approach to sustainable construction development and management Quantitative risk analysis of road transportation of hazardous materials in coastal areas Multimodal vortex-induced vibration mitigation and design approach of bistable nonlinear energy sink inerter on bridge structure Enhanced operational modal analysis and change point detection for vibration-based structural health monitoring of bridges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1