P. D. Kotler, S. V. Khromykh, A. V. Zakharova, D. V. Semenova, A. V. Kulikova, A. G. Badretdinov, E. I. Mikheev, A. S. Volosov
{"title":"Model of the Formation of Monzogabbrodiorite–Syenite–Granitoid Intrusions by the Example of the Akzhailau Massif (Eastern Kazakhstan)","authors":"P. D. Kotler, S. V. Khromykh, A. V. Zakharova, D. V. Semenova, A. V. Kulikova, A. G. Badretdinov, E. I. Mikheev, A. S. Volosov","doi":"10.1134/S086959112402005X","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a model of the formation of a multiphase Akzhailau granitoid massif formed within a Caledonian block of the Earth’s crust in the Hercynian time. This work is based on the results of major and trace element composition, geochronological, mineralogical and isotope-geochemical studies. Three stages of the formation of the Akzhailau massif are distinguished, which differ significantly from the previously accepted concepts about the multicomplex and polychronous origin of this intrusion: (1) the formation of moderately alkaline A<sub>2</sub>-type leuсogranites (308–301 Ma); (2) intrusion of monzodiorites into the base of leucogranites (~295 Ma), increasing degree of partial melting of protoliths with the formation of syenites and moderately alkaline granites of I-type (294–292 Ma); (3) intrusion of dikes and small bodies of alkaline ferroeckermannite A<sub>1</sub>-type leucogranites in the west and north of massif (~289 Ma). The Akzhailau massif was formed within about 15 Myr in the middle–upper crust through the interaction of plume-related subalkaline basitic magmas with metamorphosed crustal protolith of the orogenic structure.</p></div>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S086959112402005X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a model of the formation of a multiphase Akzhailau granitoid massif formed within a Caledonian block of the Earth’s crust in the Hercynian time. This work is based on the results of major and trace element composition, geochronological, mineralogical and isotope-geochemical studies. Three stages of the formation of the Akzhailau massif are distinguished, which differ significantly from the previously accepted concepts about the multicomplex and polychronous origin of this intrusion: (1) the formation of moderately alkaline A2-type leuсogranites (308–301 Ma); (2) intrusion of monzodiorites into the base of leucogranites (~295 Ma), increasing degree of partial melting of protoliths with the formation of syenites and moderately alkaline granites of I-type (294–292 Ma); (3) intrusion of dikes and small bodies of alkaline ferroeckermannite A1-type leucogranites in the west and north of massif (~289 Ma). The Akzhailau massif was formed within about 15 Myr in the middle–upper crust through the interaction of plume-related subalkaline basitic magmas with metamorphosed crustal protolith of the orogenic structure.
期刊介绍:
Petrology is a journal of magmatic, metamorphic, and experimental petrology, mineralogy, and geochemistry. The journal offers comprehensive information on all multidisciplinary aspects of theoretical, experimental, and applied petrology. By giving special consideration to studies on the petrography of different regions of the former Soviet Union, Petrology provides readers with a unique opportunity to refine their understanding of the geology of the vast territory of the Eurasian continent. The journal welcomes manuscripts from all countries in the English or Russian language.