An Earth-fixed observer to ship waves

H. Liang, Yan Li, Xiaobo Chen
{"title":"An Earth-fixed observer to ship waves","authors":"H. Liang, Yan Li, Xiaobo Chen","doi":"10.1017/jfm.2024.167","DOIUrl":null,"url":null,"abstract":"This work deals with the linear surface waves generated by a vessel advancing at a constant forward speed. These waves, known as ship waves, appear stationary to an observer on the vessel. Rather than exploring the well-studied stationary ship waves, this work delves into the physical properties of ship waves measured at Earth-fixed locations. While it might have been expected that analysing these waves in an Earth-fixed coordinate system would be a straightforward transformation from existing analytical theories in a moving coordinate system, the reality proves to be quite different. The properties of waves measured at fixed locations due to a passing ship turn out to be complex and non-trivial. They exhibit unique characteristics, being notably unsteady and short crested, despite appearing stationary to an observer on the generating vessel. The analytical expressions for the physical properties of these unsteady waves are made available in this work, including the amplitude, frequency, wavenumber, direction of propagation, phase velocity and group velocity. Based on these newly derived expressions and two-point measurements, an inverse method has been presented for determining the advancing speed and the course of motion of the moving ship responsible for the wave generation. The results from this study can be used in a wide range of applications, such as interpreting data from point measurements and assessing the roles of ship waves in transporting ocean particles.","PeriodicalId":505053,"journal":{"name":"Journal of Fluid Mechanics","volume":"207 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jfm.2024.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work deals with the linear surface waves generated by a vessel advancing at a constant forward speed. These waves, known as ship waves, appear stationary to an observer on the vessel. Rather than exploring the well-studied stationary ship waves, this work delves into the physical properties of ship waves measured at Earth-fixed locations. While it might have been expected that analysing these waves in an Earth-fixed coordinate system would be a straightforward transformation from existing analytical theories in a moving coordinate system, the reality proves to be quite different. The properties of waves measured at fixed locations due to a passing ship turn out to be complex and non-trivial. They exhibit unique characteristics, being notably unsteady and short crested, despite appearing stationary to an observer on the generating vessel. The analytical expressions for the physical properties of these unsteady waves are made available in this work, including the amplitude, frequency, wavenumber, direction of propagation, phase velocity and group velocity. Based on these newly derived expressions and two-point measurements, an inverse method has been presented for determining the advancing speed and the course of motion of the moving ship responsible for the wave generation. The results from this study can be used in a wide range of applications, such as interpreting data from point measurements and assessing the roles of ship waves in transporting ocean particles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
船波的地球固定观测器
这项研究涉及以恒定速度前进的船只所产生的线性表面波。这些波被称为船波,在船上的观察者看来是静止的。这项工作不是探索研究得很透彻的静止船波,而是深入研究在地球固定位置测量到的船波的物理特性。人们可能会认为,在地球固定坐标系中分析这些波浪,可以从现有的运动坐标系分析理论中直接转换过来,但事实证明情况完全不同。过往船只在固定位置测量到的波的特性非常复杂,而且非同一般。它们表现出独特的特性,尤其是不稳定和短波峰,尽管在产生波浪的船只上的观察者看来是静止的。本研究提供了这些非稳态波的物理特性分析表达式,包括振幅、频率、波数、传播方向、相速度和群速度。根据这些新推导出的表达式和两点测量结果,提出了一种反演方法,用于确定产生波浪的移动船只的前进速度和运动轨迹。这项研究的结果可用于多种应用,如解释点测量数据和评估船舶波浪在海洋颗粒传输中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vortex shedding behind porous flat plates normal to the flow Adjoint-accelerated Bayesian inference applied to the thermoacoustic behaviour of a ducted conical flame Heavy tails and probability density functions to any nonlinear order for the surface elevation in irregular seas Air-blast atomization of a liquid film The effect of permeability on the flow structure of porous square cylinders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1