Simultaneous Multiplex Genome Loci Editing of Halomonas bluephagenesis Using an Engineered CRISPR-guided Base Editor

IF 4.4 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Synthetic and Systems Biotechnology Pub Date : 2024-04-25 DOI:10.1016/j.synbio.2024.04.016
Yulin Zhang , Yang Zheng , Qiwen Hu , Zhen Hu , Jiyuan Sun , Ping Cheng , Xiancai Rao , Xiao-Ran Jiang
{"title":"Simultaneous Multiplex Genome Loci Editing of Halomonas bluephagenesis Using an Engineered CRISPR-guided Base Editor","authors":"Yulin Zhang ,&nbsp;Yang Zheng ,&nbsp;Qiwen Hu ,&nbsp;Zhen Hu ,&nbsp;Jiyuan Sun ,&nbsp;Ping Cheng ,&nbsp;Xiancai Rao ,&nbsp;Xiao-Ran Jiang","doi":"10.1016/j.synbio.2024.04.016","DOIUrl":null,"url":null,"abstract":"<div><p><em>Halomonas bluephagenesis</em> TD serves as an exceptional chassis for next generation industrial biotechnology to produce various products. However, the simultaneous editing of multiple loci in <em>H. bluephagenesis</em> TD remains a significant challenge. Herein, we report the development of a multiple loci genome editing system, named CRISPR-deaminase-assisted base editor (CRISPR-BE) in <em>H. bluephagenesis</em> TD. This system comprises two components: a cytidine (CRISPR-cBE) and an adenosine (CRISPR-aBE) deaminase-based base editor. CRISPR-cBE can introduce a cytidine to thymidine mutation with an efficiency of up to 100% within a 7-nt editing window in <em>H. bluephagenesis</em> TD. Similarly, CRISPR-aBE demonstrates an efficiency of up to 100% in converting adenosine to guanosine mutation within a 7-nt editing window. CRISPR-cBE has been further validated and successfully employed for simultaneous multiplexed editing in <em>H. bluephagenesis</em> TD. Our findings reveal that CRISPR-cBE efficiently inactivated all six copies of the IS1086 gene simultaneously by introducing stop codon. This system achieved an editing efficiency of 100% and 41.67% in inactivating two genes and three genes, respectively. By substituting the P<sub>cas</sub> promoter with the inducible promoter P<sub>Mmp1</sub>, we optimized CRISPR-cBE system and ultimately achieved 100% editing efficiency in inactivating three genes. In conclusion, our research offers a robust and efficient method for concurrently modifying multiple loci in <em>H. bluephagenesis</em> TD, opening up vast possibilities for industrial applications in the future.</p></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"9 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405805X2400067X/pdfft?md5=b15c2dd720390fb769b69b577cbe14b6&pid=1-s2.0-S2405805X2400067X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X2400067X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Halomonas bluephagenesis TD serves as an exceptional chassis for next generation industrial biotechnology to produce various products. However, the simultaneous editing of multiple loci in H. bluephagenesis TD remains a significant challenge. Herein, we report the development of a multiple loci genome editing system, named CRISPR-deaminase-assisted base editor (CRISPR-BE) in H. bluephagenesis TD. This system comprises two components: a cytidine (CRISPR-cBE) and an adenosine (CRISPR-aBE) deaminase-based base editor. CRISPR-cBE can introduce a cytidine to thymidine mutation with an efficiency of up to 100% within a 7-nt editing window in H. bluephagenesis TD. Similarly, CRISPR-aBE demonstrates an efficiency of up to 100% in converting adenosine to guanosine mutation within a 7-nt editing window. CRISPR-cBE has been further validated and successfully employed for simultaneous multiplexed editing in H. bluephagenesis TD. Our findings reveal that CRISPR-cBE efficiently inactivated all six copies of the IS1086 gene simultaneously by introducing stop codon. This system achieved an editing efficiency of 100% and 41.67% in inactivating two genes and three genes, respectively. By substituting the Pcas promoter with the inducible promoter PMmp1, we optimized CRISPR-cBE system and ultimately achieved 100% editing efficiency in inactivating three genes. In conclusion, our research offers a robust and efficient method for concurrently modifying multiple loci in H. bluephagenesis TD, opening up vast possibilities for industrial applications in the future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用工程化 CRISPR 引导的碱基编辑器同时对蓝光单胞菌进行多重基因组位点编辑
蓝花光单胞菌(Halomonas bluephagenesis TD)是下一代工业生物技术生产各种产品的理想底盘。然而,同时编辑蓝花藻 TD 的多个基因位点仍然是一个重大挑战。在此,我们报告了在蓝花楹TD中开发的多位点基因组编辑系统,名为CRISPR-去氨酶辅助碱基编辑器(CRISPR-BE)。该系统由两部分组成:基于胞嘧啶(CRISPR-cBE)和腺苷(CRISPR-aBE)脱氨酶的碱基编辑器。CRISPR-cBE 可以在 H. bluephagenesis TD 的 7-nt 编辑窗口内将胞嘧啶突变为胸苷,效率高达 100%。同样,CRISPR-aBE 在 7-nt 编辑窗口内将腺苷突变为鸟苷的效率高达 100%。CRISPR-cBE 还得到了进一步验证,并成功地用于 H. bluephagenesis TD 的同步多重编辑。我们的研究结果表明,CRISPR-cBE 通过引入终止密码子,有效地同时灭活了 IS1086 基因的所有六个拷贝。在灭活两个基因和三个基因时,该系统的编辑效率分别达到了100%和41.67%。通过用诱导型启动子 PMmp1 替代 Pcas 启动子,我们对 CRISPR-cBE 系统进行了优化,最终实现了 100%的编辑效率,灭活了三个基因。总之,我们的研究提供了一种稳健高效的方法,可同时修改蓝藻基因组TD中的多个基因座,为未来的工业应用提供了广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Synthetic and Systems Biotechnology
Synthetic and Systems Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
6.90
自引率
12.50%
发文量
90
审稿时长
67 days
期刊介绍: Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.
期刊最新文献
Semi-rational design and modification of phosphoketolase to improve the yield of tyrosol in Saccharomyces cerevisiae Pathway and protein channel engineering of Bacillus subtilis for improved production of desthiobiotin and biotin Harnessing microbial heterogeneity for improved biosynthesis fueled by synthetic biology Recent advances in the biosynthesis and production optimization of gentamicin: A critical review Coordinated regulation of two LacI family regulators, GvmR and GvmR2, on guvermectin production in Streptomyces caniferus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1