{"title":"Telomere length determines the mitochondrial copy number in blastocyst-stage embryos","authors":"Yuki Inoue, Sogo Aoki, Jun Ito, Shunsuke Hara, Komei Shirasuna, Hisataka Iwata","doi":"10.1016/j.mito.2024.101887","DOIUrl":null,"url":null,"abstract":"<div><p>Telomere length (TL) and mitochondrial DNA copy number (mt-cn) are associated with embryonic development. Here, we investigated the correlation between TL and mt-cn in bovine embryos to determine whether TL regulates mt-cn.</p><p>TL and mt-cn were closely correlated in embryos derived from six bulls. Treatment of embryos with a telomerase inhibitor (TMPyP) and siTERT shortened the TL and reduced mt-cn in blastocysts. RNA-sequencing of blastocysts developed with TMPyP revealed differentially expressed genes associated with transforming growth factor-β1 signaling and inflammation. In conclusion, TL regulates mt-cn in embryos.</p></div>","PeriodicalId":18606,"journal":{"name":"Mitochondrion","volume":"77 ","pages":"Article 101887"},"PeriodicalIF":3.9000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrion","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156772492400045X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Telomere length (TL) and mitochondrial DNA copy number (mt-cn) are associated with embryonic development. Here, we investigated the correlation between TL and mt-cn in bovine embryos to determine whether TL regulates mt-cn.
TL and mt-cn were closely correlated in embryos derived from six bulls. Treatment of embryos with a telomerase inhibitor (TMPyP) and siTERT shortened the TL and reduced mt-cn in blastocysts. RNA-sequencing of blastocysts developed with TMPyP revealed differentially expressed genes associated with transforming growth factor-β1 signaling and inflammation. In conclusion, TL regulates mt-cn in embryos.
期刊介绍:
Mitochondrion is a definitive, high profile, peer-reviewed international research journal. The scope of Mitochondrion is broad, reporting on basic science of mitochondria from all organisms and from basic research to pathology and clinical aspects of mitochondrial diseases. The journal welcomes original contributions from investigators working in diverse sub-disciplines such as evolution, biophysics, biochemistry, molecular and cell biology, genetics, pharmacology, toxicology, forensic science, programmed cell death, aging, cancer and clinical features of mitochondrial diseases.