Una arquitectura de análisis de imágenes seriadas con la tomografía por emisión de positrones mediante la aplicación de machine learning combinado para la detección del cáncer de pulmón

IF 1.6 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Revista Espanola De Medicina Nuclear E Imagen Molecular Pub Date : 2024-05-01 DOI:10.1016/j.remn.2024.500003
S. Guzmán Ortiz , R. Hurtado Ortiz , A. Jara Gavilanes , R. Ávila Faican , B. Parra Zambrano
{"title":"Una arquitectura de análisis de imágenes seriadas con la tomografía por emisión de positrones mediante la aplicación de machine learning combinado para la detección del cáncer de pulmón","authors":"S. Guzmán Ortiz ,&nbsp;R. Hurtado Ortiz ,&nbsp;A. Jara Gavilanes ,&nbsp;R. Ávila Faican ,&nbsp;B. Parra Zambrano","doi":"10.1016/j.remn.2024.500003","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction and objectives</h3><p>Lung cancer is the second type of cancer with the second highest incidence rate and the first with the highest mortality rate in the world. Machine learning through the analysis of imaging tests such as positron emission tomography/computed tomography (PET/CT) has become a fundamental tool for the early and accurate detection of cancer. The objective of this study was to propose an image analysis architecture (PET/CT) ordered in phases through the application of ensemble or combined machine learning methods for the early detection of lung cancer by analyzing PET/CT images.</p></div><div><h3>Material and methods</h3><p>A retrospective observational study was conducted utilizing a public dataset titled «A large-scale CT and PET/CT dataset for lung cancer diagnosis.» Various imaging modalities, including CT, PET, and fused PET/CT images, were employed. The architecture or framework of this study comprised the following phases: 1.<!--> <!-->image loading or collection; 2.<!--> <!-->image selection; 3.<!--> <!-->image transformation, and 4.<!--> <!-->balancing the frequency distribution of image classes. Predictive models for lung cancer detection using PET/CT images included: a)<!--> <!-->the Stacking model, which used Random Forest and Support Vector Machine (SVM) as base models and complemented them with a Logistic Regression model, and b)<!--> <!-->the Boosting model, which employed the Adaptive Boosting (AdaBoost) model for comparison with the Stacking model. Quality metrics used for evaluation included accuracy, precision, recall, and F1-score.</p></div><div><h3>Results</h3><p>This study showed a general performance of 94% with the Stacking method and a general performance of 77% with the Boosting method.</p></div><div><h3>Conclusions</h3><p>The Stacking method proved to be a model with high performance and quality for lung cancer detection when analyzing PET/CT images.</p></div>","PeriodicalId":48986,"journal":{"name":"Revista Espanola De Medicina Nuclear E Imagen Molecular","volume":"43 3","pages":"Article 500003"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Espanola De Medicina Nuclear E Imagen Molecular","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2253654X24000076","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction and objectives

Lung cancer is the second type of cancer with the second highest incidence rate and the first with the highest mortality rate in the world. Machine learning through the analysis of imaging tests such as positron emission tomography/computed tomography (PET/CT) has become a fundamental tool for the early and accurate detection of cancer. The objective of this study was to propose an image analysis architecture (PET/CT) ordered in phases through the application of ensemble or combined machine learning methods for the early detection of lung cancer by analyzing PET/CT images.

Material and methods

A retrospective observational study was conducted utilizing a public dataset titled «A large-scale CT and PET/CT dataset for lung cancer diagnosis.» Various imaging modalities, including CT, PET, and fused PET/CT images, were employed. The architecture or framework of this study comprised the following phases: 1. image loading or collection; 2. image selection; 3. image transformation, and 4. balancing the frequency distribution of image classes. Predictive models for lung cancer detection using PET/CT images included: a) the Stacking model, which used Random Forest and Support Vector Machine (SVM) as base models and complemented them with a Logistic Regression model, and b) the Boosting model, which employed the Adaptive Boosting (AdaBoost) model for comparison with the Stacking model. Quality metrics used for evaluation included accuracy, precision, recall, and F1-score.

Results

This study showed a general performance of 94% with the Stacking method and a general performance of 77% with the Boosting method.

Conclusions

The Stacking method proved to be a model with high performance and quality for lung cancer detection when analyzing PET/CT images.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用正电子发射断层扫描的串行图像分析架构,结合机器学习进行肺癌筛查
导言和目标肺癌是世界上发病率第二高、死亡率第一高的癌症。通过分析正电子发射断层扫描/计算机断层扫描(PET/CT)等成像测试进行机器学习,已成为早期准确检测癌症的基本工具。本研究的目的是提出一种图像分析架构(PET/CT),通过应用集合或组合机器学习方法,分阶段有序地分析 PET/CT 图像,从而通过分析 PET/CT 图像早期检测肺癌。研究采用了多种成像模式,包括 CT、PET 和融合 PET/CT 图像。本研究的架构或框架包括以下几个阶段:1.图像加载或收集;2.图像选择;3.图像转换;4.平衡图像类别的频率分布。利用 PET/CT 图像检测肺癌的预测模型包括:a) 堆叠模型,该模型以随机森林和支持向量机 (SVM) 为基础模型,并辅以逻辑回归模型;b) 提升模型,该模型采用自适应提升 (AdaBoost) 模型与堆叠模型进行比较。用于评估的质量指标包括准确率、精确度、召回率和 F1 分数。结果这项研究表明,堆叠法的总体性能为 94%,提升法的总体性能为 77%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista Espanola De Medicina Nuclear E Imagen Molecular
Revista Espanola De Medicina Nuclear E Imagen Molecular RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
1.10
自引率
16.70%
发文量
85
审稿时长
24 days
期刊介绍: The Revista Española de Medicina Nuclear e Imagen Molecular (Spanish Journal of Nuclear Medicine and Molecular Imaging), was founded in 1982, and is the official journal of the Spanish Society of Nuclear Medicine and Molecular Imaging, which has more than 700 members. The Journal, which publishes 6 regular issues per year, has the promotion of research and continuing education in all fields of Nuclear Medicine as its main aim. For this, its principal sections are Originals, Clinical Notes, Images of Interest, and Special Collaboration articles.
期刊最新文献
PET/RM cardiovascular con [18F]F-FDG en el diagnóstico de miocardiopatía aguda inflamatoria Radiosinoviortesis con [90Y] citrato de ytrio en la sinovitis refractaria de rodilla: experiencia de 2 hospitales de referencia Heterogeneidad del tumor primario en la PET/TC con [68Ga]Ga-PSMA previa al tratamiento para la predicción de la recurrencia bioquímica en el cáncer de próstata Asociación entre las imágenes SPECT/CT con 99mTc-PSMA y los niveles de antígeno prostático específico (PSA) y fosfatasa alcalina (ALP) después de la terapia endocrina en pacientes con cáncer de próstata y metástasis óseas Terapia de ablación con yodo radiactivo de baja dosis (1,11 GBq) para el cáncer de tiroides diferenciado en el oeste de Turquía
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1