Comparative analysis of manual and programmed annotations for crowd assessment and classification using artificial intelligence

{"title":"Comparative analysis of manual and programmed annotations for crowd assessment and classification using artificial intelligence","authors":"","doi":"10.1016/j.dsm.2024.04.001","DOIUrl":null,"url":null,"abstract":"<div><div>Funding agencies play a pivotal role in bolstering research endeavors by allocating financial resources for data collection and analysis. However, the lack of detailed information regarding the methods employed for data gathering and analysis can obstruct the replication and utilization of the results, ultimately affecting the study’s transparency and integrity. The task of manually annotating extensive datasets demands considerable labor and financial investment, especially when it entails engaging specialized individuals. In our crowd counting study, we employed the web-based annotation tool SuperAnnotate to streamline the human annotation process for a dataset comprising 3,000 images. By integrating automated annotation tools, we realized substantial time efficiencies, as demonstrated by the remarkable achievement of 858,958 annotations. This underscores the significant contribution of such technologies to the efficiency of the annotation process.</div></div>","PeriodicalId":100353,"journal":{"name":"Data Science and Management","volume":"7 4","pages":"Pages 340-348"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Science and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666764924000250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Funding agencies play a pivotal role in bolstering research endeavors by allocating financial resources for data collection and analysis. However, the lack of detailed information regarding the methods employed for data gathering and analysis can obstruct the replication and utilization of the results, ultimately affecting the study’s transparency and integrity. The task of manually annotating extensive datasets demands considerable labor and financial investment, especially when it entails engaging specialized individuals. In our crowd counting study, we employed the web-based annotation tool SuperAnnotate to streamline the human annotation process for a dataset comprising 3,000 images. By integrating automated annotation tools, we realized substantial time efficiencies, as demonstrated by the remarkable achievement of 858,958 annotations. This underscores the significant contribution of such technologies to the efficiency of the annotation process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工智能进行人群评估和分类的人工和注释比较分析
资助机构通过为数据收集和分析分配财政资源,在支持研究工作方面发挥着举足轻重的作用。然而,如果缺乏有关数据收集和分析方法的详细信息,就会阻碍结果的复制和利用,最终影响研究的透明度和完整性。对大量数据集进行人工标注需要投入大量的人力和财力,尤其是在需要聘请专业人员的情况下。在我们的人群计数研究中,我们采用了基于网络的注释工具 SuperAnnotate 来简化由 3,000 张图像组成的数据集的人工注释过程。通过整合自动注释工具,我们大大提高了时间效率,858,958 次注释的显著成果就证明了这一点。这凸显了此类技术对提高注释过程效率的重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
0
期刊最新文献
Effects of feature selection and normalization on network intrusion detection Design of knowledge transaction protection mechanism in the open innovation community based on blockchain technology Digital volunteer services in emergency situations: Typological characteristics, advantages, and challenges Forecast uncertainties real-time data-driven compensation scheme for optimal storage control Dual-market quantitative trading: The dynamics of liquidity and turnover in financial markets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1