Thermodynamic Analysis of Magnetized Carbon Nanotubes (CNTs) Conveying Ethylene Glycol (EG) Based Nanofluid Flow Through Porous Convergent/Divergent Channel in the Existence of Lorentz Force and Solar Radiation

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-04-01 DOI:10.1166/jon.2024.2131
Subhan Ullah, Amir Ali, Ikram Ullah, Muhammad Israr
{"title":"Thermodynamic Analysis of Magnetized Carbon Nanotubes (CNTs) Conveying Ethylene Glycol (EG) Based Nanofluid Flow Through Porous Convergent/Divergent Channel in the Existence of Lorentz Force and Solar Radiation","authors":"Subhan Ullah, Amir Ali, Ikram Ullah, Muhammad Israr","doi":"10.1166/jon.2024.2131","DOIUrl":null,"url":null,"abstract":"Due to higher thermal features, carbon nanotubes (CNTs) have significant uses in heating frameworks, medical, hyperthermia, industrial cooling, process of cooling in heat exchangers, electronic and pharmaceutical administration systems, heating systems, radiators, electrical, electronic\n device batteries, and engineering areas. The main concern of present study is to inspect the EG based CNTs nanomaterials flow in a porous divergent/convergent channel with the application of Lorentz force. The Darcy-Forchheimer theory is utilized to investigate the nanofluid motion and thermal\n features. Mathematical modeling is further developed by considering Joule heating, solar radiation and heat source. Ordinary differential equations (ODEs) are obtained by employing the proper transformations (obtained from symmetry analysis). The numerical computations are executed through\n NDSolve technique using Mathematica tool. The upshots of distinct significant parameters on different profiles are displayed via numerical data and sketches. The major outcome is that, enhancement in nanoparticles volume fraction and in inertia coefficient escalate the nanofluids motion for\n both divergent and convergent. Furthermore, drag forces exerted by the channel is more for higher porosity parameter and inertia coefficient. Also heat transfer rate is significantly enhances against radiation and heat source parameter and is more in case of stretching wall than the shrinking\n one. Overall, the effect of MWCNT is about 3% is more than that of CWCNT.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"71 2","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2024.2131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Due to higher thermal features, carbon nanotubes (CNTs) have significant uses in heating frameworks, medical, hyperthermia, industrial cooling, process of cooling in heat exchangers, electronic and pharmaceutical administration systems, heating systems, radiators, electrical, electronic device batteries, and engineering areas. The main concern of present study is to inspect the EG based CNTs nanomaterials flow in a porous divergent/convergent channel with the application of Lorentz force. The Darcy-Forchheimer theory is utilized to investigate the nanofluid motion and thermal features. Mathematical modeling is further developed by considering Joule heating, solar radiation and heat source. Ordinary differential equations (ODEs) are obtained by employing the proper transformations (obtained from symmetry analysis). The numerical computations are executed through NDSolve technique using Mathematica tool. The upshots of distinct significant parameters on different profiles are displayed via numerical data and sketches. The major outcome is that, enhancement in nanoparticles volume fraction and in inertia coefficient escalate the nanofluids motion for both divergent and convergent. Furthermore, drag forces exerted by the channel is more for higher porosity parameter and inertia coefficient. Also heat transfer rate is significantly enhances against radiation and heat source parameter and is more in case of stretching wall than the shrinking one. Overall, the effect of MWCNT is about 3% is more than that of CWCNT.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
存在洛伦兹力和太阳辐射时磁化碳纳米管 (CNT) 在多孔汇聚/发散通道中输送乙二醇 (EG) 纳米流体的热力学分析
由于具有较高的热特性,碳纳米管(CNTs)在加热框架、医疗、热疗、工业冷却、热交换器冷却过程、电子和制药管理系统、加热系统、散热器、电气、电子设备电池和工程领域具有重要用途。本研究的主要关注点是在洛伦兹力的作用下,检测基于 EG 的 CNTs 纳米材料在多孔发散/收敛通道中的流动。利用达西-福克海默理论研究纳米流体的运动和热特征。通过考虑焦耳加热、太阳辐射和热源,进一步建立了数学模型。通过采用适当的变换(从对称性分析中获得)获得常微分方程(ODE)。数值计算通过 Mathematica 工具的 NDSolve 技术进行。通过数值数据和草图显示了不同剖面上的重要参数。主要结果表明,纳米颗粒体积分数和惯性系数的增加会使纳米流体的发散运动和收敛运动升级。此外,孔隙率参数和惯性系数越高,通道产生的阻力越大。此外,热传导率在辐射和热源参数的影响下也会明显提高,而且拉伸壁比收缩壁的热传导率更高。总体而言,MWCNT 的效果比 CWCNT 高出约 3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Quinone-Based Mediator Immobilized Mesoporous Electrodes for Bioelectrocatalysis of Glucose Dehydrogenase. Annealing of pDNA to Form the Single-Nucleobase-Terminal Complex for In Vivo Gene Expression. Development of a pH-Responsive Nanoantibiotic Hydrogel System Based on PVA/Pectin and Biomass-Derived Bacterial Nanocellulose for Antibacterial Wound Dressings. Nanoparticle Metal Mass Uptake Correlates with Radiosensitizing Efficacy across 2D, 3D, and In Vivo Models. 1,2,4-Triazole-Based Excited-State Intramolecular Proton Transfer-Driven "Turn-On" Chemosensor for Selective Cyanide Detection with Test Strip Utility and Molecular Keypad Lock: An Experimental and Computational Exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1