Xiaopeng Sun , Shihan Liu , Zhiqiang Luo , Zhongtai Yang
{"title":"3D auxetic linkage based on Kirigami","authors":"Xiaopeng Sun , Shihan Liu , Zhiqiang Luo , Zhongtai Yang","doi":"10.1016/j.cagd.2024.102296","DOIUrl":null,"url":null,"abstract":"<div><p>The structural design of 3D auxetic linkages is a burgeoning field in digital manufacturing. This article presents a novel algorithm for designing 3D auxetic linkage structures based on Kirigami principles to address existing limitations. The 3D input model is initially mapped to a 2D space using conformal mapping based on the BFF method. This is followed by 2D re-meshing using an equilateral triangle mesh. Subsequently, a 3D topological mesh of the auxetic linkage is calculated through inverse mapping based on directed area. We then introduce new basic rotating and non-rotating units, employing them as the initial structure of the 3D auxetic linkage in accordance with Kirigami techniques. Lastly, a deformation energy function is defined to optimize the shape of the rotating units. The vertex coordinates of the non-rotating units are updated according to the optimized positions of the rotating units, thereby generating an optimal 3D auxetic linkage structure. Experimental results validate the effectiveness and accuracy of our algorithm. Quantitative analyses of structural porosity and optimization accuracy, as well as comparisons with related works, indicate that our algorithm yields structures with smaller shape errors.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102296"},"PeriodicalIF":1.3000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016783962400030X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The structural design of 3D auxetic linkages is a burgeoning field in digital manufacturing. This article presents a novel algorithm for designing 3D auxetic linkage structures based on Kirigami principles to address existing limitations. The 3D input model is initially mapped to a 2D space using conformal mapping based on the BFF method. This is followed by 2D re-meshing using an equilateral triangle mesh. Subsequently, a 3D topological mesh of the auxetic linkage is calculated through inverse mapping based on directed area. We then introduce new basic rotating and non-rotating units, employing them as the initial structure of the 3D auxetic linkage in accordance with Kirigami techniques. Lastly, a deformation energy function is defined to optimize the shape of the rotating units. The vertex coordinates of the non-rotating units are updated according to the optimized positions of the rotating units, thereby generating an optimal 3D auxetic linkage structure. Experimental results validate the effectiveness and accuracy of our algorithm. Quantitative analyses of structural porosity and optimization accuracy, as well as comparisons with related works, indicate that our algorithm yields structures with smaller shape errors.
期刊介绍:
The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following:
-Mathematical and Geometric Foundations-
Curve, Surface, and Volume generation-
CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision-
Industrial, medical, and scientific applications.
The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.