{"title":"Distributed adaptive parameter estimation over weakly connected digraphs using a relaxed excitation condition","authors":"Tushar Garg, Sayan Basu Roy","doi":"10.1002/acs.3821","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this article, a novel distributed adaptive parameter estimation (DAPE) algorithm is proposed for an multi-agent system over weakly connected digraph networks, where parameter convergence is ensured under a newly coined relaxed excitation condition, called generalized cooperative initial excitation (gC-IE). This is in contrast to the past literature, where such DAPE algorithms demand cooperative persistent of excitation (C-PE) and generalized cooperative persistent of excitation (gC-PE) for strongly connected digraph, and weakly connected digraph networks, respectively, for parameter convergence. The gC-PE and C-PE conditions are restrictive in the sense that they require the richness/excitation of information over the entire time-span of the signal/data, unlike gC-IE condition where excitation is needed only in the initial time-span. The newly coined gC-IE condition is an extension of cooperative initial excitation (C-IE) condition. While the C-IE condition is applicable to a strongly connected digraph, the newly proposed gC-IE condition extends the concept to weakly connected digraph. The proposed algorithm utilizes a novel set of weighted integrator dynamics, which omits the requirement of computationally involved multiples switching mechanisms in past literature, while still ensuring parameter convergence. The proposed algorithm provides global exponential stability of origin of the parameter estimation error dynamics under gC-IE condition. Furthermore, robustness to unmodeled disturbance is also established in the form of input-to-state stability. Simulation results validate the efficacy of the proposed algorithm in contrast to the gC-PE based algorithm.</p>\n </div>","PeriodicalId":50347,"journal":{"name":"International Journal of Adaptive Control and Signal Processing","volume":"38 8","pages":"2675-2692"},"PeriodicalIF":3.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adaptive Control and Signal Processing","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/acs.3821","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, a novel distributed adaptive parameter estimation (DAPE) algorithm is proposed for an multi-agent system over weakly connected digraph networks, where parameter convergence is ensured under a newly coined relaxed excitation condition, called generalized cooperative initial excitation (gC-IE). This is in contrast to the past literature, where such DAPE algorithms demand cooperative persistent of excitation (C-PE) and generalized cooperative persistent of excitation (gC-PE) for strongly connected digraph, and weakly connected digraph networks, respectively, for parameter convergence. The gC-PE and C-PE conditions are restrictive in the sense that they require the richness/excitation of information over the entire time-span of the signal/data, unlike gC-IE condition where excitation is needed only in the initial time-span. The newly coined gC-IE condition is an extension of cooperative initial excitation (C-IE) condition. While the C-IE condition is applicable to a strongly connected digraph, the newly proposed gC-IE condition extends the concept to weakly connected digraph. The proposed algorithm utilizes a novel set of weighted integrator dynamics, which omits the requirement of computationally involved multiples switching mechanisms in past literature, while still ensuring parameter convergence. The proposed algorithm provides global exponential stability of origin of the parameter estimation error dynamics under gC-IE condition. Furthermore, robustness to unmodeled disturbance is also established in the form of input-to-state stability. Simulation results validate the efficacy of the proposed algorithm in contrast to the gC-PE based algorithm.
期刊介绍:
The International Journal of Adaptive Control and Signal Processing is concerned with the design, synthesis and application of estimators or controllers where adaptive features are needed to cope with uncertainties.Papers on signal processing should also have some relevance to adaptive systems. The journal focus is on model based control design approaches rather than heuristic or rule based control design methods. All papers will be expected to include significant novel material.
Both the theory and application of adaptive systems and system identification are areas of interest. Papers on applications can include problems in the implementation of algorithms for real time signal processing and control. The stability, convergence, robustness and numerical aspects of adaptive algorithms are also suitable topics. The related subjects of controller tuning, filtering, networks and switching theory are also of interest. Principal areas to be addressed include:
Auto-Tuning, Self-Tuning and Model Reference Adaptive Controllers
Nonlinear, Robust and Intelligent Adaptive Controllers
Linear and Nonlinear Multivariable System Identification and Estimation
Identification of Linear Parameter Varying, Distributed and Hybrid Systems
Multiple Model Adaptive Control
Adaptive Signal processing Theory and Algorithms
Adaptation in Multi-Agent Systems
Condition Monitoring Systems
Fault Detection and Isolation Methods
Fault Detection and Isolation Methods
Fault-Tolerant Control (system supervision and diagnosis)
Learning Systems and Adaptive Modelling
Real Time Algorithms for Adaptive Signal Processing and Control
Adaptive Signal Processing and Control Applications
Adaptive Cloud Architectures and Networking
Adaptive Mechanisms for Internet of Things
Adaptive Sliding Mode Control.