Leveraging Spatiotemporal Estimation for Online Adaptive Steady-State Visual Evoked Potential Recognition

IF 5 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Cognitive and Developmental Systems Pub Date : 2024-04-23 DOI:10.1109/TCDS.2024.3392745
Jing Jin;Xinjie He;Brendan Z. Allison;Ke Qin;Xingyu Wang;Andrzej Cichocki
{"title":"Leveraging Spatiotemporal Estimation for Online Adaptive Steady-State Visual Evoked Potential Recognition","authors":"Jing Jin;Xinjie He;Brendan Z. Allison;Ke Qin;Xingyu Wang;Andrzej Cichocki","doi":"10.1109/TCDS.2024.3392745","DOIUrl":null,"url":null,"abstract":"Online adaptive canonical correction analysis (OACCA) has been applied successfully in the recently popular steady-state visual evoked potential (SSVEP) target recognition methods. However, due to the significant amount of spatiotemporal relevant background noise in the online historical sample label data of OACCA, there is redundant noise component in the learned common spatial filter that can reduce online classification accuracy. Aiming at solving this defect in OACCA, we designed an online spatial–temporal equalization filter (STE) to suppress the background noise component in the electroencephalography (EEG). Meanwhile, an adaptive decoding method for SSVEP based on online spatial–temporal estimation (STE-OACCA) is proposed by combining the online STE filter and the OACCA algorithm. A pseudoonline test on the Tsinghua University FBCCA-DW dataset shows that the proposed STE-OACCA method significantly outperforms the CCA, MSI, OACCA approaches as well as STE-CCA. More importantly, proposed method can be directly used in online SSVEP recognition without calibration. The proposed algorithm is robust, which is promising for the development of practical brain computer interface (BCI).","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"16 6","pages":"1943-1954"},"PeriodicalIF":5.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive and Developmental Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10507174/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Online adaptive canonical correction analysis (OACCA) has been applied successfully in the recently popular steady-state visual evoked potential (SSVEP) target recognition methods. However, due to the significant amount of spatiotemporal relevant background noise in the online historical sample label data of OACCA, there is redundant noise component in the learned common spatial filter that can reduce online classification accuracy. Aiming at solving this defect in OACCA, we designed an online spatial–temporal equalization filter (STE) to suppress the background noise component in the electroencephalography (EEG). Meanwhile, an adaptive decoding method for SSVEP based on online spatial–temporal estimation (STE-OACCA) is proposed by combining the online STE filter and the OACCA algorithm. A pseudoonline test on the Tsinghua University FBCCA-DW dataset shows that the proposed STE-OACCA method significantly outperforms the CCA, MSI, OACCA approaches as well as STE-CCA. More importantly, proposed method can be directly used in online SSVEP recognition without calibration. The proposed algorithm is robust, which is promising for the development of practical brain computer interface (BCI).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用时空估计进行在线自适应稳态视觉诱发电位识别
在线自适应典型校正分析(OACCA)已成功应用于近年来流行的稳态视觉诱发电位(SSVEP)目标识别方法中。然而,由于OACCA在线历史样本标签数据中存在大量的时空相关背景噪声,因此在学习到的公共空间滤波器中存在冗余的噪声成分,会降低在线分类精度。针对这一缺陷,我们设计了一种在线时空均衡滤波器(STE)来抑制脑电图(EEG)中的背景噪声成分。同时,将在线STE滤波器与OACCA算法相结合,提出了一种基于在线时空估计的SSVEP自适应译码方法(STE-OACCA)。在清华大学FBCCA-DW数据集上进行的伪在线测试表明,所提出的STE-OACCA方法显著优于CCA、MSI、OACCA方法以及STE-CCA方法。更重要的是,该方法可以直接用于在线SSVEP识别而无需校准。该算法具有较强的鲁棒性,为开发实用的脑机接口(BCI)打下了良好的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
10.00%
发文量
170
期刊介绍: The IEEE Transactions on Cognitive and Developmental Systems (TCDS) focuses on advances in the study of development and cognition in natural (humans, animals) and artificial (robots, agents) systems. It welcomes contributions from multiple related disciplines including cognitive systems, cognitive robotics, developmental and epigenetic robotics, autonomous and evolutionary robotics, social structures, multi-agent and artificial life systems, computational neuroscience, and developmental psychology. Articles on theoretical, computational, application-oriented, and experimental studies as well as reviews in these areas are considered.
期刊最新文献
Table of Contents IEEE Transactions on Cognitive and Developmental Systems Information for Authors IEEE Computational Intelligence Society Information Editorial: 2025 New Year Message From the Editor-in-Chief IEEE Transactions on Cognitive and Developmental Systems Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1