{"title":"Quasi-maximum likelihood estimation and penalized estimation under non-standard conditions","authors":"Junichiro Yoshida, Nakahiro Yoshida","doi":"10.1007/s10463-024-00901-0","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this article is to develop a general parametric estimation theory that allows the derivation of the limit distribution of estimators in non-regular models where the true parameter value may lie on the boundary of the parameter space or where even identifiability fails. For that, we propose a more general local approximation of the parameter space (at the true value) than previous studies. This estimation theory is comprehensive in that it can handle penalized estimation as well as quasi-maximum likelihood estimation (in the ergodic or non-ergodic statistics) under such non-regular models. In penalized estimation, depending on the boundary constraint, even the concave Bridge estimator does not necessarily give selection consistency. Therefore, we describe some sufficient condition for selection consistency, precisely evaluating the balance between the boundary constraint and the form of the penalty. An example is penalized MLE of variance components of random effects in linear mixed models.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-024-00901-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this article is to develop a general parametric estimation theory that allows the derivation of the limit distribution of estimators in non-regular models where the true parameter value may lie on the boundary of the parameter space or where even identifiability fails. For that, we propose a more general local approximation of the parameter space (at the true value) than previous studies. This estimation theory is comprehensive in that it can handle penalized estimation as well as quasi-maximum likelihood estimation (in the ergodic or non-ergodic statistics) under such non-regular models. In penalized estimation, depending on the boundary constraint, even the concave Bridge estimator does not necessarily give selection consistency. Therefore, we describe some sufficient condition for selection consistency, precisely evaluating the balance between the boundary constraint and the form of the penalty. An example is penalized MLE of variance components of random effects in linear mixed models.
期刊介绍:
Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.