Quasi-maximum likelihood estimation and penalized estimation under non-standard conditions

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Annals of the Institute of Statistical Mathematics Pub Date : 2024-04-23 DOI:10.1007/s10463-024-00901-0
Junichiro Yoshida, Nakahiro Yoshida
{"title":"Quasi-maximum likelihood estimation and penalized estimation under non-standard conditions","authors":"Junichiro Yoshida,&nbsp;Nakahiro Yoshida","doi":"10.1007/s10463-024-00901-0","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this article is to develop a general parametric estimation theory that allows the derivation of the limit distribution of estimators in non-regular models where the true parameter value may lie on the boundary of the parameter space or where even identifiability fails. For that, we propose a more general local approximation of the parameter space (at the true value) than previous studies. This estimation theory is comprehensive in that it can handle penalized estimation as well as quasi-maximum likelihood estimation (in the ergodic or non-ergodic statistics) under such non-regular models. In penalized estimation, depending on the boundary constraint, even the concave Bridge estimator does not necessarily give selection consistency. Therefore, we describe some sufficient condition for selection consistency, precisely evaluating the balance between the boundary constraint and the form of the penalty. An example is penalized MLE of variance components of random effects in linear mixed models.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-024-00901-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this article is to develop a general parametric estimation theory that allows the derivation of the limit distribution of estimators in non-regular models where the true parameter value may lie on the boundary of the parameter space or where even identifiability fails. For that, we propose a more general local approximation of the parameter space (at the true value) than previous studies. This estimation theory is comprehensive in that it can handle penalized estimation as well as quasi-maximum likelihood estimation (in the ergodic or non-ergodic statistics) under such non-regular models. In penalized estimation, depending on the boundary constraint, even the concave Bridge estimator does not necessarily give selection consistency. Therefore, we describe some sufficient condition for selection consistency, precisely evaluating the balance between the boundary constraint and the form of the penalty. An example is penalized MLE of variance components of random effects in linear mixed models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非标准条件下的准极大似然估计和惩罚性估计
本文的目的是发展一种一般参数估计理论,在非规则模型中,真参数值可能位于参数空间的边界上,或者甚至在可识别性失效的情况下,可以推导出估计子的极限分布。为此,我们提出了比以往研究更通用的参数空间(真值)局部近似方法。这种估计理论是全面的,因为它可以在这种非规则模型下处理惩罚估计和准极大似然估计(在啮合或非啮合统计中)。在惩罚估计中,根据边界约束,即使是凹桥估计器也不一定能给出选择一致性。因此,我们描述了选择一致性的一些充分条件,精确评估了边界约束和惩罚形式之间的平衡。一个例子是线性混合模型中随机效应方差分量的惩罚 MLE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.
期刊最新文献
Estimation of value-at-risk by $$L^{p}$$ quantile regression Simplified quasi-likelihood analysis for a locally asymptotically quadratic random field Asymptotic expected sensitivity function and its applications to measures of monotone association Penalized estimation for non-identifiable models Hidden AR process and adaptive Kalman filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1