{"title":"Formation of supermassive black holes from N self-gravitating small black holes: A thermodynamic study","authors":"Baljeet Kaur Lotte, Prasanta Kumar Mahapatra, Subodha Mishra","doi":"10.1142/s0217732324500512","DOIUrl":null,"url":null,"abstract":"<p>Both statistical and thermodynamic aspects are used to analyze the collapse of <i>N</i> self-gravitating black holes that result in the formation of supermassive black holes. The change in energy and entropy of the system in relation to the masses of the constituent black holes and their numbers are obtained. The transition temperature for the change from the high-temperature interacting gas (or particles) to the low-temperature condensed state of black holes in forming supermassive black hole is determined.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"14 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217732324500512","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Both statistical and thermodynamic aspects are used to analyze the collapse of N self-gravitating black holes that result in the formation of supermassive black holes. The change in energy and entropy of the system in relation to the masses of the constituent black holes and their numbers are obtained. The transition temperature for the change from the high-temperature interacting gas (or particles) to the low-temperature condensed state of black holes in forming supermassive black hole is determined.
期刊介绍:
This letters journal, launched in 1986, consists of research papers covering current research developments in Gravitation, Cosmology, Astrophysics, Nuclear Physics, Particles and Fields, Accelerator physics, and Quantum Information. A Brief Review section has also been initiated with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.