Primordial Nucleosynthesis with Non-Extensive Statistics

C. A. Bertulani, Shubhchintak
{"title":"Primordial Nucleosynthesis with Non-Extensive Statistics","authors":"C. A. Bertulani, Shubhchintak","doi":"arxiv-2404.15832","DOIUrl":null,"url":null,"abstract":"The conventional Big Bang model successfully anticipates the initial\nabundances of 2H(D), 3He, and 4He, aligning remarkably well with observational\ndata. However, a persistent challenge arises in the case of 7Li, where the\npredicted abundance exceeds observations by a factor of approximately three.\nDespite numerous efforts employing traditional nuclear physics to address this\nincongruity over the years, the enigma surrounding the lithium anomaly endures.\nIn this context, we embark on an exploration of Big Bang nucleosynthesis (BBN)\nof light element abundances with the application of Tsallis non-extensive\nstatistics. A comparison is made between the outcomes obtained by varying the\nnon-extensive parameter q away from its unity value and both observational data\nand abundance predictions derived from the conventional big bang model. A good\nagreement is found for the abundances of 4He, 3He and 7Li, implying that the\nlithium abundance puzzle might be due to a subtle fine-tuning of the physics\ningredients used to determine the BBN. However, the deuterium abundance\ndeviates from observations.","PeriodicalId":501573,"journal":{"name":"arXiv - PHYS - Nuclear Theory","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Nuclear Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.15832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The conventional Big Bang model successfully anticipates the initial abundances of 2H(D), 3He, and 4He, aligning remarkably well with observational data. However, a persistent challenge arises in the case of 7Li, where the predicted abundance exceeds observations by a factor of approximately three. Despite numerous efforts employing traditional nuclear physics to address this incongruity over the years, the enigma surrounding the lithium anomaly endures. In this context, we embark on an exploration of Big Bang nucleosynthesis (BBN) of light element abundances with the application of Tsallis non-extensive statistics. A comparison is made between the outcomes obtained by varying the non-extensive parameter q away from its unity value and both observational data and abundance predictions derived from the conventional big bang model. A good agreement is found for the abundances of 4He, 3He and 7Li, implying that the lithium abundance puzzle might be due to a subtle fine-tuning of the physics ingredients used to determine the BBN. However, the deuterium abundance deviates from observations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非广延性统计的原始核合成
传统的大爆炸模型成功地预测了 2H(D)、3He 和 4He 的初始丰度,与观测数据非常吻合。然而,7Li 的预测丰度超出观测数据约三倍,这是一个长期存在的难题。尽管多年来我们利用传统核物理解决这一矛盾的努力不计其数,但围绕锂异常的谜团依然存在。通过改变当时的非广延性参数 q,使其偏离其统一值所得到的结果与观测数据和传统大爆炸模型得出的丰度预测结果进行了比较。结果发现,4He、3He 和 7Li 的丰度有很好的一致性,这意味着锂丰度之谜可能是由于用于确定 BBN 的物理成分的微妙微调造成的。然而,氘丰度与观测结果有出入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quark saturation in the QCD phase diagram Quantum Magic and Multi-Partite Entanglement in the Structure of Nuclei Optimization of Nuclear Mass Models Using Algorithms and Neural Networks Far-from-equilibrium attractors with Full Relativistic Boltzmann approach in 3+1 D: moments of distribution function and anisotropic flows $v_n$ Photo-nuclear reaction rates of $^{157,159}$Ho and $^{163,165}$Tm and their impact in the $γ$--process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1