Agomirs upregulating carboxypeptidase E expression rescue hippocampal neurogenesis and memory deficits in Alzheimer’s disease

IF 10.8 1区 医学 Q1 NEUROSCIENCES Translational Neurodegeneration Pub Date : 2024-04-26 DOI:10.1186/s40035-024-00414-z
Dongfang Jiang, Hongmei Liu, Tingting Li, Song Zhao, Keyan Yang, Fuwen Yao, Bo Zhou, Haiping Feng, Sijia Wang, Jiaqi Shen, Jinglan Tang, Yu-Xin Zhang, Yun Wang, Caixia Guo, Tie-Shan Tang
{"title":"Agomirs upregulating carboxypeptidase E expression rescue hippocampal neurogenesis and memory deficits in Alzheimer’s disease","authors":"Dongfang Jiang, Hongmei Liu, Tingting Li, Song Zhao, Keyan Yang, Fuwen Yao, Bo Zhou, Haiping Feng, Sijia Wang, Jiaqi Shen, Jinglan Tang, Yu-Xin Zhang, Yun Wang, Caixia Guo, Tie-Shan Tang","doi":"10.1186/s40035-024-00414-z","DOIUrl":null,"url":null,"abstract":"Adult neurogenesis occurs in the subventricular zone (SVZ) and the subgranular zone of the dentate gyrus in the hippocampus. The neuronal stem cells in these two neurogenic niches respond differently to various physiological and pathological stimuli. Recently, we have found that the decrement of carboxypeptidase E (CPE) with aging impairs the maturation of brain-derived neurotrophic factor (BDNF) and neurogenesis in the SVZ. However, it remains unknown whether these events occur in the hippocampus, and what the role of CPE is in the adult hippocampal neurogenesis in the context of Alzheimer’s disease (AD). In vivo screening was performed to search for miRNA mimics capable of upregulating CPE expression and promoting neurogenesis in both neurogenic niches. Among these, two agomirs were further assessed for their effects on hippocampal neurogenesis in the context of AD. We also explored whether these two agomirs could ameliorate behavioral symptoms and AD pathology in mice, using direct intracerebroventricular injection or by non-invasive intranasal instillation. Restoration of CPE expression in the hippocampus improved BDNF maturation and boosted adult hippocampal neurogenesis. By screening the miRNA mimics targeting the 5’UTR region of Cpe gene, we developed two agomirs that were capable of upregulating CPE expression. The two agomirs significantly rescued adult neurogenesis and cognition, showing multiple beneficial effects against the AD-associated pathologies in APP/PS1 mice. Of note, noninvasive approach via intranasal delivery of these agomirs improved the behavioral and neurocognitive functions of APP/PS1 mice. CPE may regulate adult hippocampal neurogenesis via the CPE–BDNF–TrkB signaling pathway. This study supports the prospect of developing miRNA agomirs targeting CPE as biopharmaceuticals to counteract aging- and disease-related neurological decline in human brains.","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"26 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Neurodegeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40035-024-00414-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Adult neurogenesis occurs in the subventricular zone (SVZ) and the subgranular zone of the dentate gyrus in the hippocampus. The neuronal stem cells in these two neurogenic niches respond differently to various physiological and pathological stimuli. Recently, we have found that the decrement of carboxypeptidase E (CPE) with aging impairs the maturation of brain-derived neurotrophic factor (BDNF) and neurogenesis in the SVZ. However, it remains unknown whether these events occur in the hippocampus, and what the role of CPE is in the adult hippocampal neurogenesis in the context of Alzheimer’s disease (AD). In vivo screening was performed to search for miRNA mimics capable of upregulating CPE expression and promoting neurogenesis in both neurogenic niches. Among these, two agomirs were further assessed for their effects on hippocampal neurogenesis in the context of AD. We also explored whether these two agomirs could ameliorate behavioral symptoms and AD pathology in mice, using direct intracerebroventricular injection or by non-invasive intranasal instillation. Restoration of CPE expression in the hippocampus improved BDNF maturation and boosted adult hippocampal neurogenesis. By screening the miRNA mimics targeting the 5’UTR region of Cpe gene, we developed two agomirs that were capable of upregulating CPE expression. The two agomirs significantly rescued adult neurogenesis and cognition, showing multiple beneficial effects against the AD-associated pathologies in APP/PS1 mice. Of note, noninvasive approach via intranasal delivery of these agomirs improved the behavioral and neurocognitive functions of APP/PS1 mice. CPE may regulate adult hippocampal neurogenesis via the CPE–BDNF–TrkB signaling pathway. This study supports the prospect of developing miRNA agomirs targeting CPE as biopharmaceuticals to counteract aging- and disease-related neurological decline in human brains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
上调羧肽酶 E 表达的阿戈米尔能挽救阿尔茨海默病的海马神经发生和记忆缺陷
成年神经发生发生在海马的室下区(SVZ)和齿状回的粒下区。这两个神经源龛中的神经元干细胞对各种生理和病理刺激的反应不同。最近,我们发现随着年龄的增长,羧肽酶E(CPE)的减少会损害脑源性神经营养因子(BDNF)的成熟和SVZ中的神经发生。然而,这些事件是否发生在海马中,CPE 在阿尔茨海默病(AD)成人海马神经发生中的作用是什么,目前仍不得而知。研究人员进行了体内筛选,以寻找能够上调 CPE 表达并促进两种神经源龛中神经发生的 miRNA 模拟物。在这些模拟物中,我们进一步评估了其中两种模拟物在 AD 情况下对海马神经发生的影响。我们还探讨了这两种激动剂是否能通过直接脑室内注射或非侵入性鼻内灌注来改善小鼠的行为症状和AD病理学。恢复 CPE 在海马中的表达可改善 BDNF 的成熟并促进成年海马的神经发生。通过筛选靶向Cpe基因5'UTR区域的miRNA模拟物,我们开发出了两种能够上调CPE表达的激动剂。这两种激动剂能明显挽救APP/PS1小鼠的成年神经发生和认知能力,对AD相关病理表现出多种有益作用。值得注意的是,这些激动剂通过鼻内给药的非侵入性方法改善了APP/PS1小鼠的行为和神经认知功能。CPE可通过CPE-BDNF-TrkB信号通路调控成年海马神经发生。这项研究支持了开发以 CPE 为靶标的 miRNA 激动剂作为生物制药的前景,以应对人脑中与衰老和疾病相关的神经功能衰退。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Translational Neurodegeneration
Translational Neurodegeneration Neuroscience-Cognitive Neuroscience
CiteScore
19.50
自引率
0.80%
发文量
44
审稿时长
10 weeks
期刊介绍: Translational Neurodegeneration, an open-access, peer-reviewed journal, addresses all aspects of neurodegenerative diseases. It serves as a prominent platform for research, therapeutics, and education, fostering discussions and insights across basic, translational, and clinical research domains. Covering Parkinson's disease, Alzheimer's disease, and other neurodegenerative conditions, it welcomes contributions on epidemiology, pathogenesis, diagnosis, prevention, drug development, rehabilitation, and drug delivery. Scientists, clinicians, and physician-scientists are encouraged to share their work in this specialized journal tailored to their fields.
期刊最新文献
α-Synuclein seeding amplification assays for diagnosing synucleinopathies: an innovative tool in clinical implementation. Cellular senescence in Alzheimer's disease: from physiology to pathology. Critical role of ROCK1 in AD pathogenesis via controlling lysosomal biogenesis and acidification. TRPV1 alleviates APOE4-dependent microglial antigen presentation and T cell infiltration in Alzheimer's disease. A tumorigenicity evaluation platform for cell therapies based on brain organoids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1