{"title":"Bridging the Domain Gap in Scene Flow Estimation via Hierarchical Smoothness Refinement","authors":"Dejun Zhang, Mian Zhang, Xuefeng Tan, Jun Liu","doi":"10.1145/3661823","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces SmoothFlowNet3D, an innovative encoder-decoder architecture specifically designed for bridging the domain gap in scene flow estimation. To achieve this goal, SmoothFlowNet3D divides the scene flow estimation task into two stages: initial scene flow estimation and smoothness refinement. Specifically, SmoothFlowNet3D comprises a hierarchical encoder that extracts multi-scale point cloud features from two consecutive frames, along with a hierarchical decoder responsible for predicting the initial scene flow and further refining it to achieve smoother estimation. To generate the initial scene flow, a cross-frame nearest neighbor search operation is performed between the features extracted from two consecutive frames, resulting in forward and backward flow embeddings. These embeddings are then combined to form the bidirectional flow embedding, serving as input for predicting the initial scene flow. Additionally, a flow smoothing module based on the self-attention mechanism is proposed to predict the smoothing error and facilitate the refinement of the initial scene flow for more accurate and smoother estimation results. Extensive experiments demonstrate that the proposed SmoothFlowNet3D approach achieves state-of-the-art performance on both synthetic datasets and real LiDAR point clouds, confirming its effectiveness in enhancing scene flow smoothness.</p>","PeriodicalId":50937,"journal":{"name":"ACM Transactions on Multimedia Computing Communications and Applications","volume":"1 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Multimedia Computing Communications and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3661823","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces SmoothFlowNet3D, an innovative encoder-decoder architecture specifically designed for bridging the domain gap in scene flow estimation. To achieve this goal, SmoothFlowNet3D divides the scene flow estimation task into two stages: initial scene flow estimation and smoothness refinement. Specifically, SmoothFlowNet3D comprises a hierarchical encoder that extracts multi-scale point cloud features from two consecutive frames, along with a hierarchical decoder responsible for predicting the initial scene flow and further refining it to achieve smoother estimation. To generate the initial scene flow, a cross-frame nearest neighbor search operation is performed between the features extracted from two consecutive frames, resulting in forward and backward flow embeddings. These embeddings are then combined to form the bidirectional flow embedding, serving as input for predicting the initial scene flow. Additionally, a flow smoothing module based on the self-attention mechanism is proposed to predict the smoothing error and facilitate the refinement of the initial scene flow for more accurate and smoother estimation results. Extensive experiments demonstrate that the proposed SmoothFlowNet3D approach achieves state-of-the-art performance on both synthetic datasets and real LiDAR point clouds, confirming its effectiveness in enhancing scene flow smoothness.
期刊介绍:
The ACM Transactions on Multimedia Computing, Communications, and Applications is the flagship publication of the ACM Special Interest Group in Multimedia (SIGMM). It is soliciting paper submissions on all aspects of multimedia. Papers on single media (for instance, audio, video, animation) and their processing are also welcome.
TOMM is a peer-reviewed, archival journal, available in both print form and digital form. The Journal is published quarterly; with roughly 7 23-page articles in each issue. In addition, all Special Issues are published online-only to ensure a timely publication. The transactions consists primarily of research papers. This is an archival journal and it is intended that the papers will have lasting importance and value over time. In general, papers whose primary focus is on particular multimedia products or the current state of the industry will not be included.