Reduced model and nonlinear analysis of localized instabilities of residually stressed cylinders under axial stretch

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Mathematics and Mechanics of Solids Pub Date : 2024-04-26 DOI:10.1177/10812865241242432
Yang Liu, Xiang Yu, Luis Dorfmann
{"title":"Reduced model and nonlinear analysis of localized instabilities of residually stressed cylinders under axial stretch","authors":"Yang Liu, Xiang Yu, Luis Dorfmann","doi":"10.1177/10812865241242432","DOIUrl":null,"url":null,"abstract":"In this paper, we present a dimensional reduction to obtain a one-dimensional model to analyze localized necking or bulging in a residually stressed circular cylindrical solid. The nonlinear theory of elasticity is first specialized to obtain the equations governing the homogeneous deformation. Then, to analyze the nonhomogeneous part, we include higher-order correction terms of the axisymmetric displacement components leading to a three-dimensional form of the total potential energy functional. Details of the reduction to the one-dimensional form are given. We focus on a residually stressed Gent material and use numerical methods to solve the governing equations. Two loading conditions are considered. First, the residual stress is maintained constant, while the axial stretch is used as the loading parameter. Second, we keep the pre-stretch constant and monotonically increase the residual stress until bifurcation occurs. We specify initial conditions, find the critical values for localized bifurcation, and compute the change in radius during localized necking or bulging growth. Finally, we optimize material properties and use the one-dimensional model to simulate necking or bulging until the Maxwell values of stretch are reached.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"19 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10812865241242432","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a dimensional reduction to obtain a one-dimensional model to analyze localized necking or bulging in a residually stressed circular cylindrical solid. The nonlinear theory of elasticity is first specialized to obtain the equations governing the homogeneous deformation. Then, to analyze the nonhomogeneous part, we include higher-order correction terms of the axisymmetric displacement components leading to a three-dimensional form of the total potential energy functional. Details of the reduction to the one-dimensional form are given. We focus on a residually stressed Gent material and use numerical methods to solve the governing equations. Two loading conditions are considered. First, the residual stress is maintained constant, while the axial stretch is used as the loading parameter. Second, we keep the pre-stretch constant and monotonically increase the residual stress until bifurcation occurs. We specify initial conditions, find the critical values for localized bifurcation, and compute the change in radius during localized necking or bulging growth. Finally, we optimize material properties and use the one-dimensional model to simulate necking or bulging until the Maxwell values of stretch are reached.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轴向拉伸下残余应力圆柱体局部不稳定性的简化模型和非线性分析
在本文中,我们提出了一种降维方法,以获得一个一维模型来分析残余应力圆柱形固体中的局部缩颈或隆起。首先对非线性弹性理论进行专门研究,以获得控制均质变形的方程。然后,为了分析非均质部分,我们加入了轴对称位移分量的高阶修正项,从而得到总势能函数的三维形式。我们给出了还原为一维形式的细节。我们将重点放在残余应力根特材料上,并使用数值方法求解支配方程。我们考虑了两种加载条件。首先,保持残余应力恒定,同时使用轴向拉伸作为加载参数。其次,保持预拉伸不变,单调增加残余应力,直到出现分岔。我们指定初始条件,找到局部分叉的临界值,并计算局部缩颈或隆起生长过程中的半径变化。最后,我们优化了材料特性,并使用一维模型模拟了缩颈或隆起,直至达到麦克斯韦拉伸值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematics and Mechanics of Solids
Mathematics and Mechanics of Solids 工程技术-材料科学:综合
CiteScore
4.80
自引率
19.20%
发文量
159
审稿时长
1 months
期刊介绍: Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science. The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Plane-stress analysis of a holed membrane at finite equibiaxial stretch Comment on “Explicit solutions in Cartesian coordinates for an elliptic hole in an infinite elastic plate” by M. Oore and S. Oore Sensitivity analysis of an inflated and extended fiber-reinforced membrane with different natural configurations of its constituents Finite-strain Poynting–Thomson model: Existence and linearization Reflection of plane waves from the free surface of a hard sphere-filled elastic metacomposite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1