{"title":"Elevation in body temperature may increase susceptibility to cortical spreading depression in a rat model","authors":"","doi":"10.1016/j.neures.2024.04.004","DOIUrl":null,"url":null,"abstract":"<div><p>One characteristic of migraine is recurrent headache attacks, which are known to be induced by changes in climatic variables such as atmospheric pressure, humidity, and outside temperature. However, the relationship between temperature changes and migraine remains unclear. Therefore, we investigated the relationship between body temperature changes and cortical spreading depression (CSD) using KCl-induced rat models of CSD. We initially induced CSD under controlled conditions at a room temperature of 28°C on an operating table maintained at 37°C. Subsequently, we controlled the operating table temperature to induce a second round of CSD under conditions of either a 10 ± 1<!--> <!-->% increase or decrease in body temperature. We ensured 1 h rest period between the first and second inductions of CSD. The results indicated that the number of CSDs significantly increased after body temperature elevation (before, 8.8 ± 1.2 times vs. after, 13.4 ± 1.3 times; p = 0.0003). The mean percentage change in cerebral blood flow decreased after body temperature increased (before, 33.1 ± 2.4<!--> <!-->% vs. after, 18.2 ± 1.4<!--> <!-->%; p = 0.006). There were no significant changes in CSD after body temperature decreased. The susceptibility of the cortex to CSD may increase under conditions of elevated body temperature.</p></div>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":"206 ","pages":"Pages 30-34"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168010224000555/pdfft?md5=fb4552627cc27f3e7fc8c8301ab611b7&pid=1-s2.0-S0168010224000555-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168010224000555","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
One characteristic of migraine is recurrent headache attacks, which are known to be induced by changes in climatic variables such as atmospheric pressure, humidity, and outside temperature. However, the relationship between temperature changes and migraine remains unclear. Therefore, we investigated the relationship between body temperature changes and cortical spreading depression (CSD) using KCl-induced rat models of CSD. We initially induced CSD under controlled conditions at a room temperature of 28°C on an operating table maintained at 37°C. Subsequently, we controlled the operating table temperature to induce a second round of CSD under conditions of either a 10 ± 1 % increase or decrease in body temperature. We ensured 1 h rest period between the first and second inductions of CSD. The results indicated that the number of CSDs significantly increased after body temperature elevation (before, 8.8 ± 1.2 times vs. after, 13.4 ± 1.3 times; p = 0.0003). The mean percentage change in cerebral blood flow decreased after body temperature increased (before, 33.1 ± 2.4 % vs. after, 18.2 ± 1.4 %; p = 0.006). There were no significant changes in CSD after body temperature decreased. The susceptibility of the cortex to CSD may increase under conditions of elevated body temperature.
期刊介绍:
The international journal publishing original full-length research articles, short communications, technical notes, and reviews on all aspects of neuroscience
Neuroscience Research is an international journal for high quality articles in all branches of neuroscience, from the molecular to the behavioral levels. The journal is published in collaboration with the Japan Neuroscience Society and is open to all contributors in the world.