Molecular chirality quantification: Tools and benchmarks

Ethan Abraham, Abraham Nitzan
{"title":"Molecular chirality quantification: Tools and benchmarks","authors":"Ethan Abraham, Abraham Nitzan","doi":"10.1063/5.0200716","DOIUrl":null,"url":null,"abstract":"Molecular chirality has traditionally been viewed as a binary property where a molecule is classified as either chiral or achiral, yet in recent decades, mathematical methods for quantifying chirality have been explored. Here, we use toy molecular systems to systematically compare the performance of two state-of-the-art chirality measures: (1) the Continuous Chirality Measure (CCM) and (2) the Chirality Characteristic (χ). We find that both methods exhibit qualitatively similar behavior when applied to simple molecular systems such as a four-site molecule or the polymer double-helix, but we show that the CCM may be more suitable for evaluating the chirality of arbitrary molecules or abstract structures such as normal vibrational modes. We discuss a range of considerations for applying these methods to molecular systems in general, and we provide links to user-friendly codes for both methods. We aim for this paper to serve as a concise resource for scientists attempting to familiarize themselves with these chirality measures or attempting to implement chirality measures in their own work.","PeriodicalId":501648,"journal":{"name":"The Journal of Chemical Physics","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0200716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular chirality has traditionally been viewed as a binary property where a molecule is classified as either chiral or achiral, yet in recent decades, mathematical methods for quantifying chirality have been explored. Here, we use toy molecular systems to systematically compare the performance of two state-of-the-art chirality measures: (1) the Continuous Chirality Measure (CCM) and (2) the Chirality Characteristic (χ). We find that both methods exhibit qualitatively similar behavior when applied to simple molecular systems such as a four-site molecule or the polymer double-helix, but we show that the CCM may be more suitable for evaluating the chirality of arbitrary molecules or abstract structures such as normal vibrational modes. We discuss a range of considerations for applying these methods to molecular systems in general, and we provide links to user-friendly codes for both methods. We aim for this paper to serve as a concise resource for scientists attempting to familiarize themselves with these chirality measures or attempting to implement chirality measures in their own work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分子手性量化:工具和基准
分子手性传统上被视为一种二元属性,即分子被分为手性或非手性,然而近几十年来,人们开始探索量化手性的数学方法。在这里,我们使用玩具分子系统来系统地比较两种最先进的手性测量方法的性能:(1) 连续手性测量(CCM)和 (2) 手性特征(χ)。我们发现,这两种方法在应用于简单分子系统(如四位分子或聚合物双螺旋)时,表现出本质上相似的行为,但我们表明,CCM 可能更适合评估任意分子或抽象结构(如正常振动模式)的手性。我们讨论了将这些方法应用于一般分子系统的一系列注意事项,并提供了这两种方法的用户友好型代码链接。我们希望本文能成为科学家们熟悉这些手性测量方法或在自己的工作中实施手性测量方法的简明资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Substitutional Cu doping at the cation sites in Ba2YNbO6 toward improved visible-light photoactivity—A first-principles HSE06 study GW with hybrid functionals for large molecular systems Classical and quantum thermodynamics in a non-equilibrium regime: Application to thermostatic Stirling engine Thermodynamic quantum Fokker–Planck equations and their application to thermostatic Stirling engine The “simple” photochemistry of thiophene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1